Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T23:40:07.490Z Has data issue: false hasContentIssue false

Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

Published online by Cambridge University Press:  06 April 2016

Daniel C. Bufford
Affiliation:
Radiation-Solid Interactions Department, Sandia National Laboratories, USA; [email protected]
Y. Morris Wang
Affiliation:
Lawrence Livermore National Laboratory, USA; [email protected]
Yue Liu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, USA; [email protected]
Lei Lu
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China; [email protected]
Get access

Abstract

The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. Understanding the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, is key to understanding and utilizing these materials. This article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, while engineered approaches are necessary for fcc metals with higher stacking-fault energies. Growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, L., Chen, X., Huang, X., Lu, K., Science 323, 607 (2009).Google Scholar
Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., Lu, K., Science 304, 422 (2004).CrossRefGoogle Scholar
Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., Lu, K., Scr. Mater. 52, 989 (2005).Google Scholar
Lu, K., Lu, L., Suresh, S., Science 324, 349 (2009).Google Scholar
Lu, L., You, Z.S., Lu, K., Scr. Mater. 66, 837 (2012).Google Scholar
Chen, X.H., Lu, L., Lu, K., J. Appl. Phys. 102, 083708 (2007).Google Scholar
Chen, K.C., Wu, W.W., Liao, C.N., Chen, L.J., Tu, K.N., Science 321, 1066 (2008).Google Scholar
Meng, G.Z., Shao, Y.W., Zhang, T., Zhang, Y., Wang, F.H., Electrochim. Acta 53, 5923 (2008).Google Scholar
Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006).Google Scholar
Liu, T.C., Liu, C.M., Huang, Y.S., Chen, C., Tu, K.N., Scr. Mater. 68, 241 (2013).CrossRefGoogle Scholar
Christian, J.W., Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).Google Scholar
Zhu, Y.T., Liao, X.Z., Wu, X.L., Prog. Mater. Sci. 57, 1 (2012).Google Scholar
Hirth, J.P., Lothe, J., Theory of Dislocations (Krieger Publishing, Malabar, FL, 1982).Google Scholar
You, Z.S., Lu, L., Lu, K., Acta Mater. 59, 6927 (2011).Google Scholar
Wu, B.Y.C., Ferreira, P.J., Schuh, C.A., Metall. Mater. Trans. A 36A, 1927 (2005).Google Scholar
Chandrasekar, M.S., Pushpavanam, M., Electrochim. Acta 53, 3313 (2008).Google Scholar
Jin, S., Pan, Q.S., Lu, L., Acta Metall. Sin. 49, 635 (2013).Google Scholar
Vasiljevic, N., Wood, M., Heard, P.J., Schwarzacher, W., J. Electrochem. Soc. 157, D193 (2010).Google Scholar
Chan, T.C., Chueh, Y.L., Liao, C.N., Cryst. Growth Des. 11, 4970 (2011).Google Scholar
Koch, C.C., Scattergood, R.O., Saber, M., Kotan, H., J. Mater. Res. 28, 1785 (2013).CrossRefGoogle Scholar
Ohring, M., Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, 2001).Google Scholar
Hodge, A.M., Wang, Y.M., Barbee, T.W., Mater. Sci. Eng. A 429, 272 (2006).Google Scholar
Zhang, X., Wang, H., Chen, X.H., Lu, L., Lu, K., Hoagland, R.G., Misra, A., Appl. Phys. Lett. 88, 173116 (2006).Google Scholar
Bufford, D., Wang, H., Zhang, X., Acta Mater. 59, 93 (2011).Google Scholar
Furnish, T.A., Hodge, A.M., APL Mater. 2, 046112 (2014).Google Scholar
Ott, R.T., Geng, J., Besser, M.F., Kramer, M.J., Wang, Y.M., Park, E.S., LeSar, R., King, A.H., Acta Mater. 96, 378 (2015).Google Scholar
Zhang, X., Misra, A., Wang, H., Lima, A.L., Hundley, M.F., Hoagland, R.G., J. Appl. Phys. 97, 094302 (2005).CrossRefGoogle Scholar
Zhang, X., Misra, A., Wang, H., Shen, T.D., Nastasi, M., Mitchell, T.E., Hirth, J.P., Hoagland, R.G., Embury, J.D., Acta Mater. 52, 995 (2004).Google Scholar
Velasco, L., Polyakov, M.N., Hodge, A.M., Scr. Mater. 83, 33 (2014).Google Scholar
Hodge, A.M., Wang, Y.M., Barbee, T.W., Scr. Mater. 59, 163 (2008).Google Scholar
Zhang, X., Misra, A., Wang, H., Swadener, J.G., Lima, A.L., Hundley, M.F., Hoagland, R.G., Appl. Phys. Lett. 87, 233116 (2005).CrossRefGoogle Scholar
Bufford, D., Liu, Y., Zhu, Y., Bi, Z., Jia, Q.X., Wang, H., Zhang, X., Mater. Res. Lett. 1, 51 (2013).Google Scholar
Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., Zhang, X., Appl. Phys. Lett. 93, 083108 (2008).Google Scholar
Zhang, X., Anderoglu, O., Misra, A., Wang, H., Appl. Phys. Lett. 90, 153101 (2007).Google Scholar
Dahlgren, S.D., Nicholson, W.L., Merz, M.D., Bollmann, W., Devlin, J.F., Wang, D.R., Thin Solid Films 40, 345 (1977).Google Scholar
Freund, L.B., Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, New York, 2009).Google Scholar
Zhang, X., Anderoglu, O., Hoagland, R.G., Misra, A., JOM 60, 75 (2008).Google Scholar
Ma, H., Zou, Y., Sologubenko, A.S., Spolenak, R., Acta Mater. 98, 17 (2015).Google Scholar
Idrissi, H., Wang, B.J., Colla, M.S., Raskin, J.P., Schryvers, D., Pardoen, T., Adv. Mater. 23, 2119 (2011).Google Scholar
Wang, B., Idrissi, H., Shi, H., Colla, M.S., Michotte, S., Raskin, J.P., Pardoen, T., Schryvers, D., Scr. Mater. 66, 866 (2012).CrossRefGoogle Scholar
Thornton, J.A., Annu. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
Liu, Y., Bufford, D., Wang, H., Sun, C., Zhang, X., Acta Mater. 59, 1924 (2011).CrossRefGoogle Scholar
Liu, Y., Bufford, D., Rios, S., Wang, H., Chen, J., Zhang, J.Y., Zhang, X., J. Appl. Phys. 111, 073526 (2012).Google Scholar
Yu, K.Y., Bufford, D., Chen, Y., Liu, Y., Wang, H., Zhang, X., Appl. Phys. Lett. 103, 181903 (2013).Google Scholar
Wegscheider, W., Eberl, K., Abstreiter, G., Cerva, H., Oppolzer, H., Appl. Phys. Lett. 57, 1496 (1990).Google Scholar
Dynna, M., Marty, A., Gilles, B., Patrat, G., Acta Mater. 45, 257 (1997).Google Scholar
Zhang, Y.S., Liu, L.L., Zhang, T.Y., J. Appl. Phys. 101, 063502 (2007).Google Scholar
Liu, Y., Chen, Y., Yu, K.Y., Wang, H., Chen, J., Zhang, X., Int. J. Plast. 49, 152 (2013).CrossRefGoogle Scholar
Rauch, E., Veron, M., Portillo, J., Bultreys, D., Maniette, Y., Nicolopoulos, S., Microsc. Anal. 128, S5 (2008).Google Scholar
Wang, J., Anderoglu, O., Hirth, J.P., Misra, A., Zhang, X., Appl. Phys. Lett. 95, 021908 (2009).Google Scholar
Xu, L., Xu, D., Tu, K.N., Cai, Y., Wang, N., Dixit, P., Pang, J.H.L., Miao, J.M., J. Appl. Phys. 104, 113717 (2008).Google Scholar
Wang, Y.M., Sansoz, F., LaGrange, T., Ott, R.T., Marian, J., Barbee, T.W., Hamza, A.V., Nat. Mater. 12, 697 (2013).Google Scholar
Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J.Y., Hirth, J.P., Acta Mater. 58, 2262 (2010).CrossRefGoogle Scholar
LaGrange, T., Reed, B.W., Wall, M., Mason, J., Barbee, T., Kumar, M., Appl. Phys. Lett. 102, 011905 (2013).CrossRefGoogle Scholar
Bufford, D., Wang, H.Y., Zhang, X.H., J. Mater. Res. 28, 1729 (2013).Google Scholar
Chen, Y., Yu, K.Y., Liu, Y., Shao, S., Wang, H., Kirk, M.A., Wang, J., Zhang, X., Nat. Commun. 6, 7036 (2015).Google Scholar
Shute, C.J., Myers, B.D., Xie, S., Li, S.Y., Barbee, T.W., Hodge, A.M., Weertman, J.R., Acta Mater. 59, 4569 (2011).CrossRefGoogle Scholar
Yoo, B.G., Boles, S.T., Liu, Y., Zhang, X., Schwaiger, R., Eberl, C., Kraft, O., Acta Mater. 81, 184 (2014).Google Scholar
Li, N., Wang, J., Zhang, X., Misra, A., JOM 63, 62 (2011).Google Scholar
Bufford, D., Liu, Y., Wang, J., Wang, H., Zhang, X., Nat. Commun. 5, 4864 (2014).Google Scholar
Anderoglu, O., Misra, A., Wang, H., Zhang, X., J. Appl. Phys. 103, 094322 (2008).Google Scholar
Zhang, Y., Wang, J., Shan, H., Zhao, K., Scr. Mater. 108, 35 (2015).Google Scholar
Saldana, C., Murthy, T.G., Shankar, M.R., Stach, E.A., Chandrasekar, S., Appl. Phys. Lett. 94, 021910 (2009).Google Scholar
Zhao, Y.F., Furnish, T.A., Kassner, M.E., Hodge, A.M., J. Mater. Res. 27, 3049 (2012).Google Scholar
Ye, J.C., Wang, Y.M., Barbee, T.W., Hamza, A.V., Appl. Phys. Lett. 100, 261912 (2012).Google Scholar
You, Z.S., Li, X.Y., Gui, L.J., Lu, Q.H., Zhu, T., Gao, H.J., Lu, L., Acta Mater. 61, 217 (2013).Google Scholar
Jang, D.C., Li, X.Y., Gao, H.J., Greer, J.R., Nat. Nanotechnol. 7, 594 (2012).Google Scholar
Jian, W.W., Cheng, G.M., Xu, W.Z., Yuan, H., Tsai, M.H., Wang, Q.D., Koch, C.C., Zhu, Y.T., Mathaudhu, S.N., Mater. Res. Lett. 1, 61 (2013).CrossRefGoogle Scholar
Huang, Q., Yu, D.L., Xu, B., Hu, W.T., Ma, Y.M., Wang, Y.B., Zhao, Z.S., Wen, B., He, J.L., Liu, Z.Y., Tian, Y.J., Nature 510, 250 (2014).Google Scholar