Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T01:10:01.592Z Has data issue: false hasContentIssue false

Surface and interface effects in magnetic core–shell nanoparticles

Published online by Cambridge University Press:  13 November 2013

R.F.L. Evans
Affiliation:
Department of Physics, University of York, UK; [email protected]
R.W. Chantrell
Affiliation:
Department of Physics, University of York, UK; [email protected]
O. Chubykalo-Fesenko
Affiliation:
Instituto de Ciencia de Materiales de Madrid; [email protected]
Get access

Abstract

Using computational modeling, we describe and explain the effects resulting from surfaces and interfaces in core–shell nanoparticles. We outline the basis of the atomistic spin model, which is used to simulate the equilibrium and dynamic magnetic properties of magnetic nanoparticles. The physical origin of magnetic surface anisotropy is described, along with its effect on the magnetic spin configuration and energy landscape. Importantly, it is shown that a cubic anisotropic surface can be induced, which leads to a complex energy landscape with a non-trivial size dependence. Additional microstructural effects in realistic nanoparticle microstructures are investigated, and fundamental magnetic properties can be significantly altered as a result. Finally, an important effect known as exchange bias is also described. Exchange bias causes an enhancement of the thermal stability of magnetic nanoparticles, but due to its atomic origin, it also leads to complicated physical behavior.

Type
Magnetic Nanoparticles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binder, K., Heermann, D.W., Monte Carlo Methods in Statistical Physics (Springer-Verlag, Berlin, 1979), p. 204.CrossRefGoogle Scholar
Gambardella, P., Rusponi, S., Veronese, M., Dhesi, S.S., Grazioli, C., Dallmeyer, A., Cabria, I., Zeller, R., Dederichs, P.H., Kern, K., Carbone, C., Brune, H., Science 300, 1130 (2003).Google Scholar
Lazarovits, B., Szunyogh, L., Weinberger, P., Phys. Rev. B 65, 104441 (2002).Google Scholar
Jamet, M., Wernsdorfer, W., Thirion, C., Dupuis, V., Mélinon, P., Pérez, A., Mailly, D., Phys. Rev. B 69, 024401 (2004).Google Scholar
Eastham, D.A., Kirkman, I.W., J. Phys. Condens. Matter 1 (12), L525 (2000).Google Scholar
Meiklejohn, W.H., Bean, C.P., Phys. Rev. 102, 1413 (1956).CrossRefGoogle Scholar
O’Grady, K., Fernandez-Outon, L.E., Vallejo-Fernandez, G., J. Magn. Magn. Mater. 322, 883 (2010).Google Scholar
Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J., J. Appl. Phys. 85, 5828 (1999).Google Scholar
Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., Nogués, J., Nature 19, 423 (2003).Google Scholar
Evans, R.F.L., Yanes, R., Mryasov, O., Chantrell, R.W., Chubykalo-Fesenko, O., Europhys. Lett. 88, 57004 (2009).Google Scholar
Evans, R.F.L., Bate, D., Chantrell, R.W., Yanes, R., Chubykalo-Fesenko, O., Phys. Rev. B 84, 092404 (2011).Google Scholar
Iglesias, O., Batlle, X., Labarta, A., Phys. Rev. B 72, 212401 (2005).Google Scholar
Eftaxias, E., Trohidou, K.N., Phys. Rev. B 71, 134406 (2005).CrossRefGoogle Scholar
Burrows, F., Parker, C., Evans, R.F.L., Hancock, Y., Hovorka, O., Chantrell, R.W., J. Phys. 043, 474010 (2010).Google Scholar
Haase, C., Nowak, U., Phys. Rev. B 85, 045435 (2012).Google Scholar
Mryasov, O.N., Nowak, U., Guslienko, K.Y., Chantrell, R.W., Europhys. Lett. 69, 805 (2005).Google Scholar
Nowak, U., Wieser, R., Mryasov, O.N., Guslienko, K., Chantrell, R.W., Phys. Rev. B 72, 172410 (2005).Google Scholar
Néel, L., J. Phys. Radium 15, 376 (1954).Google Scholar
Jamet, M., Wernsdorfer, W., Thirion, C., Dupuis, V., Melinon, P., Perez, A., Mailly, D., Phys. Rev. B 69, 24401 (2004).Google Scholar
Dorfbauer, F., Evans, R., Kirschner, M., Chubykalo-Fesenko, O., Chantrell, R., Schrefl, T., J. Magn. Magn. Mater. 316, E791 (2007).CrossRefGoogle Scholar
Evans, R., Dorfbauer, F., Chubykalo-Fesenko, O., Schrefl, T., Chantrell, R.W., IEEE Trans. Magn. 43, 3106 (2007).Google Scholar
Bruno, P., Phys. Rev. B 39, 865 (1989).Google Scholar
Szunyogh, L.L., Udvardi, L., Philos. Mag. B 78, 617 (1998).Google Scholar
Luis, F., Bartolomé, F., Petroff, F., Bartolomé, J., García, L.M., Deranlot, C., Jaffrès, H., Martínez, M.J., Bencok, P., Wilhelm, F., Rogalev, A., Brookes, N.B., Europhys. Lett. 76, 142 (2006).Google Scholar
Binns, C., Baker, S.H., Edmonds, K.W., Finetti, P., Maher, M.J., Louch, S.C., Dhesi, S.S., Brookes, N.B., J. Phys. Condens. Matter 318, 350 (2002).Google Scholar
Bodker, F., Mörup, S., Linderoth, S., Phys. Rev. Lett. 72, 282 (1994).Google Scholar
Fiorani, D., Ed., Surface Effects in Magnetic Nanoparticles (Springer Science, NY, 2005).CrossRefGoogle Scholar
Lu, A.-H., Salabas, E.L., Schüth, F., Angew. Chem. Int. Ed. 46, 1222 (2007).Google Scholar
Luis, F., Torres, J.M., García, L.M., Bartolomé, J., Stankiewicz, J., Petroff, F., Fettar, F., Maurice, J.-L., Vaurès, A., Phys. Rev. B 65, 094409 (2002).Google Scholar
Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 287, 1989 (2000).CrossRefGoogle Scholar
Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P., J. Appl. Phys. 94, 3520 (2003).Google Scholar
Pérez, N., Guardia, P., Roca, A.G., Morales, M.P., Serna, C.J., Iglesias, O., Bartolomé, F., García, L.M., Batlle, X., Labarta, A., Nanotechnology 19, 475704 (2008).Google Scholar
Garanin, D.A., Kachkachi, H., Phys. Rev. Lett. 90, 065504 (2003).Google Scholar
Yanes, R., Chubykalo-Fesenko, O., Evans, R.F.L., Chantrell, R.W., J. Phys. D 43, 474009 (2010).Google Scholar
Yanes, R., Chubykalo-Fesenko, O., Kachkachi, H., Garanin, D.A., Evans, R., Chantrell, R.W., Phys. Rev. B 76, 064416 (2007).CrossRefGoogle Scholar
Dorfbauer, F., Schrefl, T., Kirschner, M., Hrkac, G., Suess, D., Ertl, O., Fidler, J., J. Appl. Phys. 99, 08G706 (2006).Google Scholar
Evans, R., Nowak, U., Dorfbauer, F., Shrefl, T., Mryasov, O., Chantrell, R.W., Grochola, G., J. Appl. Phys. 99, 08G703 (2006).Google Scholar
Aas, C.J., Szunyogh, L., Evans, R.F.L., Chantrell, R.W., J. Phys. Condens. Matter 25, 296006 (2013).Google Scholar
Wang, H., Ma, P.-W., Woo, C.H., Phys. Rev. B 82, 144304 (2010).Google Scholar
Antoniak, C., Gruner, M.E., Spasova, M., Trunova, A.V., Romer, F.M., Warland, A., Krumme, B., Fauth, K., Sun, S., Entel, P., Farle, M., Wende, H., Nat. Commun. 2, 528 (2011).Google Scholar