Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:58:45.009Z Has data issue: false hasContentIssue false

Studies of Ancient Glass and Their Application to Nuclear-Waste Management

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

During several hundred years of burial in the soil, glass objects, especially those with the high potassium content of medieval compositions, develop heavily corroded surfaces, showing phenomena such as local pitting, laminated layers, and browning effects. The long-term behavior of glass in the soil or in contact with groundwater is not only of interest to glass scientists with a background in archaeology, but also for those with a special interest in nuclear-waste management. Several attempts have been made to propose the decomposition of ancient glasses as an indicator for the performance of buried nuclear-waste glasses. In spite of differences in glass composition and exposure conditions, the development of alteration or corrosion layers with time is a common concern, as shown in this article. Laboratory experiments, representing a simplified model for real conditions, offer the possibility for systematic investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wicks, G.G., in Corrosion of Glass, Ceramics, and Ceramic Superconductors, edited by Clark, D.E. and Zoitos, B.K. (Noyes Publications, Park Ridge, NJ, 1992) p. 218; M.J. Jercinovic and R.C. Ewing, p. 330; P.B. Vandiver, p. 393.Google Scholar
2.Römich, H., in The Surface: A Bug in New and Old Glasses—GS 2000, in Proc. Conf. Rivista della Stazione Sperimentale del Vetro (Stazione Sperimentale del Vetro, Venice, Italy, 2000) p. 45.Google Scholar
3.Newton, R.G. and Davison, S., Conservation of Glass (Butterworths, London, 1989).Google Scholar
4.Bange, K., Anderson, O., Rauch, F., Lehuédé, P., Rädlein, E., Tadokoro, N., Mazzoldi, P., Rigato, V., Matsumoto, K., and Farnworth, M., Glastech. Ber. Glass Sci. Technol. 74 (5) (2001) p. 127.Google Scholar
5.Geilmann, W., Glastechn. Ber. 29 (1956) p. 145;Google Scholar
Geilmann, W., Glastechn. Ber. 33 (1960) p. 291.Google Scholar
6.Schreiner, M. and Sauter, F., Beiträge zur Mittelalterarchäologie in Österreich 7 (1991) p. 39.Google Scholar
7.Freestone, I.C., Middleton, A.P., and Meeks, N.D., J. Archaeolog. Sci. 21 (1994) p. 425.CrossRefGoogle Scholar
8.Freestone, I.C., in Handbook of Archaeological Sciences, edited by Rothwell, D.R. and Pollard, A.M. (John Wiley & Sons, New York, 2001) p. 611.Google Scholar
9.Brill, R.H. and Hood, H.P., Nature 189 (1961) p. 12.CrossRefGoogle Scholar
10.Cox, G.A. and Ford, B.A., Glass Technol. 30 (1989) p. 113;Google Scholar
Cox, G.A. and Ford, B.A., J. Mater. Sci. 28 (1993) p. 5637.CrossRefGoogle Scholar
11.Iseghem, P.V., ed., Special Issue: Glass in Its Disposal Environment, J. Nucl. Mater. 298 (2001).Google Scholar
12.Pollard, A.M. and Heron, C., Archaeological Chemistry (The Royal Society of Chemistry, Cambridge, 1996).CrossRefGoogle Scholar
13.Cronyn, J.M., The Elements of Archaeological Conservation (Routledge, London, 1990).Google Scholar
14.Lemmens, K., J. Nucl. Mater. 298 (2001) p. 11.CrossRefGoogle Scholar
15.Strachan, D.M., J. Nucl. Mater. 298 (2001) p. 69.CrossRefGoogle Scholar
16.Strachan, D.M., Bourcier, W.L., and McGrail, B.P., Radioact. Waste Management Environ. Restoration 19 (1–3) (1994) p. 129.Google Scholar
17.Gin, S., Ribet, I., and Couillard, M., J. Nucl. Mater. 298 (2001) p. 1.CrossRefGoogle Scholar
18.McGrail, B.P., Kumar, A., and Day, D.E., J. Am. Ceram. Soc. 67 (7) (1984) p. 463.CrossRefGoogle Scholar
19.Iseghem, P.V., J. Nucl. Mater. 298 (2001) p. 86.CrossRefGoogle Scholar
20.Vandiver, P.B., in Materials Issues in Art and Archaeology IV, edited by Vandiver, P.B., Druzik, J.R., Madrid, J.L.G., Freestone, I.C., and Wheeler, G.S. (Mater. Res. Soc. Symp. Proc. 352, Pittsburgh, 1995) p. 395.Google Scholar
21.Krumbein, W.E., Urzi, C.E., and Gehrmann, C., Geomicrobiol. J. 9 (1991) p. 139.CrossRefGoogle Scholar
22.Thorseth, I.H., Furnes, H., and Tumyr, O., Chem. Geol. 119 (1995) p. 139.CrossRefGoogle Scholar
23.Staudiegel, H., Chastain, R.A., Yayanos, A., and Bourcier, W., Chem. Geol. 119 (1995) p. 147.CrossRefGoogle Scholar
24.Römich, H., López, E., Mees, F., Jacobs, P., Cornelis, E., van Dyck, D., and Doménech Carbó, T., in Proc. Non-Destructive Testing and Micro-analysis for Cultural Heritage Conf., edited by van Grieken, R., Janssens, K., Van't Dack, L., and Meersman, G. [CD-ROM] (University of Antwerp, Belgium, 2002).Google Scholar
25.Römich, H., Gerlach, S., Mottner, P., Mees, F., Jacobs, P., van Dyck, D., and Doménech Carbó, T., presented at Symposium II, Materials Research Society Meeting, Boston, December 2, 2002, paper No. II2.3.Google Scholar
26.Fekrsanati, F., diploma thesis, Fraunhofer ISC, Bronnbach, Germany, 1998.Google Scholar
27.Römich, H. and López, E., in Proc. Conf. on Hyalos Vitrum Glass, edited by Kordas, G. (Glasnet Publications, Athens, 2002) p. 241.Google Scholar
28.Abdelouas, A., Crovisier, J.-L., Lutze, W., Müller, R., and Bernotat, W., Eur. J. Mineral. 7 (1995) p. 1101.CrossRefGoogle Scholar
29.Hamilton, J.P. and Pantano, C.G., J. Non-Cryst. Solids 222 (1997) p. 167.CrossRefGoogle Scholar
30.Macquet, C. and Thomassin, J.H., Appl. Clay Sci. 7 (1992) p. 17.CrossRefGoogle Scholar
31.Heimann, R.B., Glass Technol. 27 (1986) p. 96.Google Scholar
32.Fletcher, W.W., J. Glass Studies 13 (1972) p. 149.Google Scholar
33.Newton, R.G., Glass Technol. 22 (1) (1981) p. 42;Google Scholar
Newton, R.G., Glass Technol. 33 (5) (1992) p. 179.Google Scholar