Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T08:20:48.695Z Has data issue: false hasContentIssue false

Solution-deposited PEDOT for transparent conductive applications

Published online by Cambridge University Press:  20 October 2011

Andreas Elschner
Affiliation:
Heraeus, Germany; [email protected]
Wilfried Lövenich
Affiliation:
Heraeus, Germany; [email protected]
Get access

Abstract

This article summarizes current applications and the future potential of highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT). The main focus of the article is a water dispersed complex of PEDOT with poly(styrenesulfonic acid) (PSS) as the counter-ion. The availability of PEDOT:PSS as an ink allows many facile ways of solution processing. The basic chemical and physical properties of the PEDOT:PSS complex are discussed to show the fundamentals that allow for the use of PEDOT in transparent conductive applications. Due to the increase in conductivity and transparency of the PEDOT:PSS complex in recent years, this versatile material now has reached the requirements for current devices such as displays, touch screens, and solar cells, and offers an alternative to inorganic transparent conductive oxides. Further advantages of this polymer are the ductility, use in low-cost production processes such as printing, safe handling, and availability on a large scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chiang, C.K., Fincher, C.R. Jr., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G., Phys. Rev. Lett. 39, 109 (1977).CrossRefGoogle Scholar
2.Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J., J. Chem. Soc., Chem. Commun. 578 (1977).CrossRefGoogle Scholar
3.Epstein, A.J., Handbook of Conducting Polymers, 3rd Edition (CRC Press, Boca Raton, FL, 2007).Google Scholar
4.Conwell, E.M., Handbook of Organic Conductive Molecules and Polymers (Wiley, Chichester, UK, 1997).Google Scholar
5.Heeger, A.J., J. Phys. Chem. B 105, 8475 (2001).CrossRefGoogle Scholar
6.Jonas, F., Heywang, G., DE 3813589 (Bayer AG), April 22, 1988.Google Scholar
7.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., Reuter, K., PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Boca Raton, FL, 2011), pp. 126.Google Scholar
8.Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R., Adv. Mater. 12, 481 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
9.Kirchmeyer, S., Reuter, K., J. Mater. Chem. 15, 2077 (2005).CrossRefGoogle Scholar
10.Kudoh, Y., Akami, K., Matsuya, Y., Synth. Met. 98, 65 (1998).CrossRefGoogle Scholar
11.Karibyants, N., Dautzenberg, H., Cölfen, H., Marcomolecules 30, 7803 (1997).CrossRefGoogle Scholar
12.Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G., Shinar, J., Polymer 45, 8443 (2004).CrossRefGoogle Scholar
13.Xia, Y., Ouyang, J., Macromolecules 42, 4141 (2002).CrossRefGoogle Scholar
14.Timpanaro, S., Kemerink, M., Touwslager, F.J., De Kok, M.M., Schrader, S., Chem. Phys. Lett. 394, 339 (2004).CrossRefGoogle Scholar
15.Heuer, H.W., Wehrmann, R., Kirchmeyer, S., Adv. Funct. Mater. 12, 89 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
16.Fehse, K., Walzer, K., Leo, K., Lövenich, W., Elschner, A., Adv. Mater. 19, 441 (2007).CrossRefGoogle Scholar
17.Galagan, Y., Rubingh, J.E.J.M., Andriessen, R., Fan, C.C., Blom, P.W.M., Veenstra, S.C., Kroon, J.M., Sol. Energy Mater. Sol. Cells 95, 1339 (2011).CrossRefGoogle Scholar