Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T08:25:56.308Z Has data issue: false hasContentIssue false

Silica-Based Planar Lightwave Circuits and Their Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article reviews the fabrication technologies and optical characteristics of silica-based planar lightwave circuits (PLCs) on Si developed for photonic networks based on wavelength-division multiplexing (WDM). While there have been various planar optical waveguides made with different materials, silica-based PLCs are the most suitable for constructing practical devices because of their excellent design flexibility, stability, and reproducibility. These advantages mainly result from their material characteristics, that is, silica glass is chemically and physically stable. The article also describes the basic characteristics and recent development of arrayed waveguide grating (AWG) multiplexers/demultiplexers as a device application. Since AWGs offer the advantages of low-loss, high-output port counts and mass producibility, they have played a pivotal role in the construction of flexible, large-capacity WDM networks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kaminow, P., IEEE J. Select. Areas Commun. 14 (1996) p. 780.CrossRefGoogle Scholar
2.Sato, K., Special Issue on Operation and Management of Broadband Networks, IEEE Commun. Mag. 34 (1996) p. 86.Google Scholar
3.Miki, T., IEICE Trans. E74–1 (1991) p. 93.Google Scholar
4.Hibino, Y., IEICE Trans. Commun. E83–B (10) (2000) p. 2178.Google Scholar
5.Scobey, M.A. and Spock, D.E., in OFC ′96 Tech. Dig., Vol. 2 (The Optical Society of America, Washington, DC, 1996) p. 242.Google Scholar
6.Verbeek, B.H., Henry, C.H., Olsson, N.A., Orlowsky, K.J., Kazarinov, R.F., and Johnson, B.H., J. Lightwave Technol. 6 (6) (1988) p. 1011.Google Scholar
7.Kawachi, M., Opt. Quantum Electron. 22 (1990) p. 391.CrossRefGoogle Scholar
8.Henry, C.H., Kazarinov, R.F., Lee, H.J., Orlowsky, K.J., and Katz, L.E., Appl. Opt. 26 (1987) p. 2621.Google Scholar
9.Henry, C.H., Shani, Y., Kistler, R.C., Jewell, T.E., Pol, V., Olsson, N.A., Kazarinov, R.F., and Orlowsky, K.J., J. Lightwave Technol. 7 (9) (1989) p. 1379.CrossRefGoogle Scholar
10.Offrein, B.J., Horst, F., Bona, G.L., Germann, R., Salemink, H.W.M., and Beyeler, R., IEEE Photon. Technol. Lett. 12 (2000) p. 504.CrossRefGoogle Scholar
11.Hussel, C.P., Ramaswamy, R.V., and Srivastava, R., Appl. Phys. Lett. 56 (1990) p. 2381.Google Scholar
12.Diemeer, M.N., Brons, J.J., and Trommel, E.S., J. Lightwave Technol. 7 (1989) p. 449.Google Scholar
13.Hartman, D.H., Lalk, G.R., Howse, J.W., and Krchnavek, R.R., Appl. Opt. 28 (1) (1989) p. 40.CrossRefGoogle Scholar
14.Hida, Y., Onose, H., and Imamura, S., IEEE Photon. Technol. Lett. 5 (1993) p. 782.Google Scholar
15.Matsuura, T., Ando, S., Matsui, S., Sasaki, S., and Yamamoto, F., Electron. Lett. 29 (1993) p. 2107.CrossRefGoogle Scholar
16.Fisher, U., Zinke, T., Kropp, J.R., Arndt, F., and Petermann, K., IEEE Photon. Technol. Lett. 8 (1996) p. 647.CrossRefGoogle Scholar
17.Kominato, T., Ohmori, Y., Okazaki, H., and Yasu, M., Electron. Lett. 26 (5) (1990) p. 327.CrossRefGoogle Scholar
18.Suzuki, S., Sumida, S., Inoue, Y., Ishii, M., and Ohmori, Y., Electron. Lett. 33 (13) (1997) p. 1173.CrossRefGoogle Scholar
19.Hibino, Y., Hida, Y., Kaneko, A., Ishii, M., Itoh, M., Goh, T., Sugita, A., Saida, T., Himeno, A., and Ohmori, Y., OFC Tech. Dig. (The Optical Society of America, Washington DC, 2000) paper No. WH2.Google Scholar
20.Hida, Y., Hibino, Y., Okazaki, H., and Ohmori, Y., in Proc. IPR (The Optical Society of America, Washington, DC, 1995) paper No. IthC6.Google Scholar
21.Marcuse, D., Bell Sys. Tech. J. 50 (8) (1971) p. 2551.CrossRefGoogle Scholar
22.Ishii, M., Hibino, Y., Hida, Y., Kaneko, A., Itoh, M., Goh, T., Sugita, A., Saida, T., Himeno, A., and Ohmori, Y., in Proc. ECOC 2000, Vol. 3 (2000) p. 27.Google Scholar
23.Shani, Y., Henry, C.H., Kistler, R.C., Kazarinov, R.F., and Orlowsky, K.J., IEEE J. Quantum Electron. 27 (3) (1991) p. 556.Google Scholar
24.Moeman, P., Van Daele, P., and Demester, P.M., IEEE J. Sel. Top. Quantum Electron. 3 (6) (1997) p. 1308.CrossRefGoogle Scholar
25.Yamaguchi, N., Kokubun, Y., and Sato, K., J. Lightwave Technol. 8 (4) (1990) p. 587.CrossRefGoogle Scholar
26.Yanagawa, H., Shimizu, T., Nakamura, S., and Ohyama, I., J. Lightwave Technol. 10 (5) (1992) p. 587.Google Scholar
27.Yanagisawa, M., Yamada, Y., and Kobayashi, M., Electron. Lett. 28 (21) (1992) p. 1958.Google Scholar
28.Spuhler, M.M., Offrein, B.J., Bona, G.L., Germann, R., Massarek, I., and Erni, D., J. Lightwave Technol. 6 (9) (1998) p. 1680.CrossRefGoogle Scholar
29.Fan, R.S. and Hooker, R.B., J. Lightwave Technol. 17 (3) (1999) p. 466.CrossRefGoogle Scholar
30.Itoh, M., Saida, T., Hida, Y., Ishii, M., Inoue, Y., Hibino, Y., and Sugita, A., Electron. Lett. 38 (2) (2002) p. 72.CrossRefGoogle Scholar
31.Jacobs, B., Zengerle, R., Faltin, K., and Weiershausen, W., Electron. Lett. 31 (10) (1995) p. 794.CrossRefGoogle Scholar
32.Hibino, Y., Hanawa, F., Nakagome, H., Ishii, M., and Takato, N., J. Lightwave Technol. 13 (1995) p. 1728.Google Scholar
33.Hanafusa, H., Sumida, S., and Takato, N., in Reliability of Photonics Materials and Structures, edited by Suhir, E., Fukuda, M., and Kurkjian, C.R. (Mater. Res. Soc. Symp. Proc. 531, Warrendale, PA, 1998) p. 349.Google Scholar
34.Ishii, M., Hibino, Y., Hanafusa, F., Nakagome, H., and Kato, K., J. Lightwave Technol. 16 (2) (1998) p. 258.CrossRefGoogle Scholar
35.Okamoto, K., Opt. Quantum Electron. 31 (1999) p. 107.CrossRefGoogle Scholar
36.Kaneko, A., Sugita, A., and Okamoto, K., IEICE Trans. Electron. E83–C (6) (2000) p. 860.Google Scholar
37.Lenz, G., Eggleton, B.J., Giles, C.R., Madsen, C.K., and Slusher, R.E., IEEE J. Quantum Electron. 34 (8) (1998) p. 1390.Google Scholar
38.Yamada, H., Okamoto, K., Kaneko, A., and Sugita, A., Opt. Lett. 25 (8) (2000) p. 569.Google Scholar
39.Inoue, Y., Takahashi, H., Ando, S., Sawada, T., Himeno, A., and Kawachi, M., J. Lightwave Technol. 15 (1997) p. 1947.Google Scholar
40.Suzuki, S., Sumida, S., Inoue, Y., Ishii, M., and Ohmori, Y., Electron. Lett. 33 (13) (1997) p. 1173.Google Scholar
41.Nadler, K., Wildermuth, E.K., Lanker, M., Hunziker, W., and Melchior, H., IEEE J. Sel. Top. Quantum Electron. 5 (1999) p. 1407.Google Scholar
42.Inoue, Y., Itoh, M., Hashizume, Y., Hibino, Y., Sugita, A., and Himeno, A., in OFC Tech. Dig. (The Optical Society of America, Washington, DC, 2001) paper No. WB4.Google Scholar
43.Kasahara, R., Itoh, M., Hida, Y., Saida, T., Inoue, Y., and Hibino, Y., in IPR2002 Tech. Dig. (The Optical Society of America, Washington, DC, 2002) paper No. Ife5.Google Scholar
44.Hida, Y., Hibino, Y., Itoh, M., Sugita, A., Himeno, A., and Ohmori, Y., Electron. Lett. 36 (9) (2000) p. 820.CrossRefGoogle Scholar
45.Hida, Y., Hibino, Y., Kitoh, T., Inoue, Y., Itoh, M., Shibata, T., and Himeno, A., Electron. Lett. 37 (9) (2001) p. 576.Google Scholar
46.Goh, T., Yasu, M., Hattori, K., Himeno, A., Okuno, M., and Ohmori, Y., J. Lightwave Technol. 19 (3) (2001) p. 371.Google Scholar
47.Madsen, C.K. and Zhao, J.H., Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons, New York, 1999).Google Scholar