Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:28:12.751Z Has data issue: false hasContentIssue false

Self-Amplifying Semiconducting Polymers for Chemical Sensors

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The ability of excited states (excitons) to migrate rapidly and efficiently through conjugated polymers makes these materials ideal for use in sensors based on fluorescence quenching or amplification of fluorescence signals. The structural features we are able to introduce into these polymers have allowed us both to design highly sensitive fluorescent sensors for specific analytes, such as the explosive trinitrotoluene (TNT), and to create assemblies that control energy transfer along a predetermined path. The principles involved have broad utility in the design of sensory materials as well as of electronic devices and display components based on electronic polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marsella, M.J., Carroll, P.J., and Swager, T.M., J. Am. Chem. Soc. 116 (1994) p. 9347 and J. Am. Chem. Soc. 117 (1995) p. 9832;CrossRefGoogle Scholar
Marsella, M.J., Newland, R.J., Carroll, P.J., and Swager, T.M., J. Am. Chem. Soc. 117 (1995) p. 9842;CrossRefGoogle Scholar
Zhu, S.S. and Swager, T.M., J. Am. Chem. Soc. 119 (1997) p. 12568.CrossRefGoogle Scholar
2.Swager, T.M., Acc. Chem. Res. 31 (1998) p. 201;CrossRefGoogle Scholar
Wosnick, J.H. and Swager, T.M., Curr. Opin. Chem. Biol. 4 (2000) p. 711.CrossRefGoogle Scholar
3.Zhou, Q. and Swager, T.M., J. Am. Chem. Soc. 117 (1995) p. 7017.CrossRefGoogle Scholar
4.Hohler, G., ed., Exciton Dynamics in Molecular Crystals and Aggregates (Springer, Berlin, 1982).Google Scholar
5.Bässler, H., Schweitzer, B., and Huen, S., Acc. Chem. Res. 32 (1999) p. 173.CrossRefGoogle Scholar
6.McQuade, D.T., Pullen, A.E., and Swager, T.M., Chem. Rev. 100 (2000) p. 2537.CrossRefGoogle Scholar
7.Levitsky, I.A., Kim, J., and Swager, T.M., J. Am. Chem. Soc. 121 (1999) p. 1466.CrossRefGoogle Scholar
8.Cotts, P.M., Swager, T.M., and Zhou, Q., Macromolecules 29 (1996) p. 7323.CrossRefGoogle Scholar
9.Kim, J., McHugh, S., and Swager, T.M., Macromolecules 32 (1999) p. 1500.CrossRefGoogle Scholar
10.Yang, J.-S. and Swager, T.M., J. Am. Chem. Soc. 120 (1998) p. 5321 and p. 11864.CrossRefGoogle Scholar
11.Jenkins, T.F., Leggett, D.C., Miyares, P.H., Walsh, M.E., Ranney, T.A., and George, V., Talanta 54 (2001) p. 501.CrossRefGoogle Scholar
12.Cumming, J.C., Aker, C., Fisher, M., Fox, M., la Grone, M.J., Reust, D., Rockley, M.G., Swager, T.M., Towers, E., and Williams, V., IEEE Trans. Geosci. Remote Sens. 39 (2001) p. 1119.CrossRefGoogle Scholar
13.Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B.J., and Tolbert, S.H., Science 288 (2000) p. 652.CrossRefGoogle Scholar
14.Brédas, J.L., J. Chem. Phys. 82 (1985) p. 3808.CrossRefGoogle Scholar
15.Rose, A., Lugmair, C.G., and Swager, T.M., J. Am. Chem. Soc. 123 (2001) p. 11298.CrossRefGoogle Scholar
16.Yamaguchi, S. and Swager, T.M., J. Am. Chem. Soc. 123 (2001) p. 12087.CrossRefGoogle Scholar
17.Decher, G., Science 277 (1997) p. 1232.CrossRefGoogle Scholar
18.McQuade, D.T., Hegedus, A.H., and Swager, T.M., J. Am. Chem Soc. 122 (2000) p. 12389.CrossRefGoogle Scholar
19.Kim, J., McQuade, D.T., Rose, A., Zhu, Z., and Swager, T.M., J. Am. Chem. Soc. 123 (2001) p. 11488.CrossRefGoogle Scholar