Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:16:07.300Z Has data issue: false hasContentIssue false

Refractories for Glass Making

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Glass melting has changed very little in general principles since the earliest times, still being produced in fireclay pots or crucibles—even up to the present day. In Europe, experiments to melt glasses in tank furnaces began about 1700 A.D., but this became an important form of glass manufacture after Siemens introduced the regenerative furnace in 1870. This design was the basis for the development of modern furnaces and there is still a considerable similarity to the original.

Until the late 1920s the glass contact refractories used in tank furnaces were based on fireclay or sandstone blocks. About this time important changes began when sillimanite and fusion-cast mullite refractories became available. However, because of the higher cost of fusion-cast refractories the introduction of these materials was delayed and they did not come into general use for lining the glass melting tank until the late 1940s.

The high performance of tank furnaces today is related to a number of factors such as improved furnace design and regeneration, but the most significant has been an improved melting rate brought about by the use of higher temperatures. This has only been achievable as a result of the improved quality of fusion-cast and other refractory materials, such as those used in the furnace superstructure and regenerators. Garstang showed that there has been a steady increase in melting temperatures in the container glass industry. In data going back to 1920, there has been an increase from about 1300°C to some 1590°C. Bondarev showed that the increase in production achieved by using higher temperatures reduces the specific consumption of fuel.

Type
Refractories
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anon, Glass Bottle Makers Yorkshire United Trade Protection Soc., Soc. Glass Tech. Library Sheffield (1873) p. 417.Google Scholar
2.Siemans, C.W., British Patent No. 1513 (1870).Google Scholar
3.Houldsworth, H.S., J. Soc. Glass Tech. 9 (1925) p. 3T.Google Scholar
4.Currie, J., J. Soc. Glass Tech. 6 (1922) p. 156T.Google Scholar
5.English, S., J. Soc. Glass Tech. 7 (1923) p. 248T.Google Scholar
6.Fukher, G.S., U.S. Patent No. 1 615 750 (1925).CrossRefGoogle Scholar
7.Garstang, A., Glass Tech. 12(1) (1971) p. 17.Google Scholar
8.Bondarev, K.T. and Pollyak, V.V., Steklo Keram 28(1) (1971) p. 812.Google Scholar
9.Botvinkin, O.K. and Zhuse, T.B., Steklo Keram 28(1) (1971) p. 1213.Google Scholar
10. EEC C.P.I.V. (1983).Google Scholar
11.Hrma, P., Glass Tech. 23(3) (1982) p. 151.Google Scholar
12.Dunkl, M. and Bruckner, R., Glastech. Ber. 60(8) (1987) p. 261267.Google Scholar
13.Nernst, W., Z. Phys. Chem. 47 (1904) p. 52; 53 (1905) p. 235.CrossRefGoogle Scholar
14.Wagner, C.J., Phys. Colloid Chem. 53 p. 1030.CrossRefGoogle Scholar
15.Schmidt, E. and Beckman, W., Forsch. Geb. Ing. Wes. (1930) p. 1391.Google Scholar
16.Busby, T.S. and Eccles, J., Glass Tech. 5(3) (1964) p. 115123.Google Scholar
17.Loffler, J., Glastech Ber. 38 (1965) p. 398405.Google Scholar
18.Marwedel, H. Jebsen, Glastech. Ber. 39(9) (1966) p. 399402.Google Scholar
19.Hrma, P., Chem. Eng. Sci. 25 (1970) p. 16791688.CrossRefGoogle Scholar
19a.Cable, M. & Martlew, D., Glass Tech. 12(6) (1971) p. 142147.Google Scholar
20.Ross, D.W., J. Am. Ceram. Soc. 9(9) (1926) p. 613617.Google Scholar
21.McCauley, , Bull. Am. Ceram. Soc. 4(11) (1925) p. 605609.Google Scholar
22.Preston, F.W. and Turnbull, J.S., Am. J. Sci. 239(2) (1941) p. 92106.CrossRefGoogle Scholar
23.Busby, T.S. and Barker, J., J. Am. Ceram. Soc. 49(8) (1966) p. 441446.CrossRefGoogle Scholar
24.Gillespie, B.E., PhD thesis, Sheffield University (1968).Google Scholar
25.Scriver, and Sternling, , J. Fluid Mech. (1964) p. 321–40.CrossRefGoogle Scholar
26.Busby, T.S., 10th Int. Congress on Glass (1974) p. 2.202.30.Google Scholar
27.Argenot, P., 4th Int. Congress on Glass (1956) p. 7378.Google Scholar
28.Orlov, D.L.et al., Glass Ceram. 43(3-4) (1986) p. 148150.CrossRefGoogle Scholar
29.Baucke, F.G.K. and Roth, G., Glastech. Ber. 61(5) (1988) p. 109118.Google Scholar
30.Lexow, J. and Bruckner, R., Glastech. Ber. 57(4) (1984) p. 81.Google Scholar
31.Bruckner, R., Glastech. Ber. 53 (1980) p. 321.Google Scholar
32.Busby, T.S., Glass. Tech. 20(3) (1979) p. 91.Google Scholar
33.Schulte, K., Glastech. Ber. 50(8) (1977) p. 181.Google Scholar
34.Begley, E.R., Ceram. Eng. Sci. Proc. 9(3-4) (1988) p. 306314.Google Scholar
35.Jeanvoine, P. and Guigonis, J., Glass International 40 (September, 1980).Google Scholar
36.Busby, T.S., Glass Tech. 19(3) (1978) p. 5456.Google Scholar
37.Bowen, N.L. and Greig, J.W., J. Am. Ceram. Soc. 7(4) (1924) p. 242.CrossRefGoogle Scholar
38.Fulcher, G.S., U.S. Patent No. 1 615 751 (1926).Google Scholar
39.Budnikov, P.P. and Litvakovskii, A.A., Dokl. Akad. Nauk. SSSR 106 (1956) p. 267.Google Scholar
40.Davies, A.D. and Wehrenberg, T.M., Ceram. Eng. Sci. Proc. 9(3-4) (1988) p. 273283.Google Scholar
41.Rublevskii, I.P.et al., Steklo i Keramika 11 (1983) p. 811.Google Scholar
42.Popov, O.N.et al., Steklo Ceram. 38(2) (1981) p. 9.Google Scholar
43.Myles, T.A. and Knee, F., Ceram. Eng. Sci. Proc. 7(1-2) (1986) p. 269270.Google Scholar
44.Chan, W.Y. and Nicholson, P.S., Ceramic Bull. 57(2) 1978) p. 226.Google Scholar
45.Begley, E.R., Handbook of Glass Manufacture (F.V. Tooley) Vol. 1 (1974) p. 403454.Google Scholar
46.Busby, T.S.et al. 19(3) (1978) p. 54-56.Google Scholar
47.Brown, R.W. and Stach, O.R., Bull. Am. Ceram. Soc. 30 (1951) p. 251.Google Scholar
48.McMullen, J.C. and Thompson, A.P., Bull. Am. Ceram. Soc. 29 p. 12. (1950)Google Scholar
49.Nandi, D.N., Glass Udyog 10(2) (1981) p. 45.Google Scholar
50.Wehrenberg, T.M. and Stein, J.R., Glass Industry 67(9) (1986) p. 18–19, 38.Google Scholar
51.Wehrenberg, T.M. and McGary, C.M., Ceram. Eng. Sci. Proc. 9(1-2) (1988) p. 8289.Google Scholar
52.Didier, A.G. Werke, Information Sheet (September, 1988).Google Scholar
53.Thomas, E.A. and Manigault, E.L., J. Can. Ceram. Soc. 45 (1976) p. 21.Google Scholar
54.Shaw, G.B., Glass Tech. 19(4) (1978) p. 75.Google Scholar
55.Hansel, S., Riv. Staz Sper. Vetro (5) (1982) p. 113.Google Scholar
56.Thomas, E.A., J. Can. Ceram. Soc. 44 (1975) p. 37.Google Scholar
57.Robyn, P.et al., Proc. 28th Int. Colloq. Refractories Aachen (1985) p. 408.Google Scholar
58.Konopicky, K.et al., Glastech. Ber. 34(1) (1961) p. 115.Google Scholar
59.Morsanyi, A.V., Glass Tech. 7(1) (1966) p. 196202.Google Scholar
60.Boggum, P., Verres Refract. 24(3) (1970) p. 124132.Google Scholar
61.Hoff, G., Glass 53(2) (1976) p. 4445.Google Scholar
62.Christoff, G. and Rostami, F., Proc. 28th Int. Colloq. Refract. Aachen (1985) p. 92.Google Scholar
63.Kirkbride, B.J., Glass Tech. 20(5) (1979) p. 174.Google Scholar
64.Beerkens, R.G.C. and de Waal, H., Glass. Tech. 28(6) (1987) p. 246.Google Scholar
65.Beerkens, R.G.C. and de Wall, H., Glastech. Ber. 61(2) (1988) p. 2642.Google Scholar
66.Gebhardt, F., Glastech Ber. 51(6) (1978) p. 147.Google Scholar
67.Davies, R.E.et al.34th Conf. on Glass Problems (1973) p. 109126.Google Scholar
68.Robyn, P.et al., 28th Int. Colloq. on Refractories Aachen (1985) p. 184.Google Scholar
69.Busby, T.S. and Sengelow, W.N., Glass Tech. 19(3) (1978) p. 47.Google Scholar
70.Naefe, H. and Schulte, K., Sprechsaal 107(20) (1974) p. 883892.Google Scholar
71.Gebhardt, F., Glastech. Ber. 49(3) (1976) p. 5359.Google Scholar
72.Busby, T.S. and Carter, M., Glass Tech. 12 (5) (1971) p. 113.Google Scholar
73.Ferguson, W.S., Ceram. Eng. Sci. Proc. 2(1-2) (1981) p. 35.CrossRefGoogle Scholar
74.Barrow, C., Ceram. Eng. Sci. Proc. 6(3-4) (1985) p. 294298.Google Scholar
75.Bortha, P., Glasstech. Ber. 58(10) (1985) p. 288.Google Scholar
76.Robyn, P., 28th Int. Colloq. on Refractories Aachen (1985) p. 184.Google Scholar
77.Kettner, P. and Christoff, G., Radex Rundschau 1 (1986) p. 311.Google Scholar
78.Weichert, T., 28th Int. Colloq. on Refractories Aachen (1985) p. 28.Google Scholar
79.Kuchta, H.D., Glass Int. (September 1986) p. 3135.Google Scholar
80.Barthel, H. and Mogling, G., Glass Int. (September 1986) p. 4855.Google Scholar
81.Kivala, W.J. and Wolfe, H.E., Ceram. Eng. Sci. Proc. 9(3-4) (1988) p. 318328.Google Scholar
82.Moreau, J.C.et al., Sprechsaal 118(5) (1985) p. 399401.Google Scholar
83.Poolos, W.A. and Nelson, F.S., Ceram. Bull. 63(11) (1984) p. 1419.Google Scholar
84.Wood, R., Glass Tech. 22(2) (1981) p. 79.Google Scholar
85.Moreau, R. and Van Dommelen, T., Glass 58(12) (1981) p. 38.Google Scholar
86.Bondarev, K.T. and Popov, O.N., Steklo Keram 31(1-2) (1974) p. 36.Google Scholar
87.Sandmeyer, K.H., Am. Ceram. Soc. (October 1966).Google Scholar
88.Schmidt, B.L. and Harris, R.S., 32nd Conf. on Glass Problems (1971) p. 123.Google Scholar
89.Boggum, P.P., Glass 51(6) (1974) p. 219223.Google Scholar
90.Antonov, B.V.et al., Steklo Keram 7 (1980) p. 23.Google Scholar
91.Bakonji, Z., Conf. Budapest (June 1-5, 1981).Google Scholar
92.Boggum, P.P. and Pausch, W., Glass 55(9) (1978) p. 48.Google Scholar
93.Ramachandran, C.V.et al., Glass 63(10) (1986) p. 354358.Google Scholar
94.Wichelow, V., Glass Tech. 25(6) (1984) p. 256.Google Scholar
95.Matveev, V.I.et al., Steklo Keram 27(6) (1970) p. 15.Google Scholar
96.Hobson, G.S.et al., J. Inst. Msmt. Control (1987).Google Scholar
97.Voss, G.H.J. and Glomb, K., Glastech. Ber. 54(6) (1981) p. 149.Google Scholar
98.Descheper, P., Robyn, P., and Parry, A.V., Glass Int. (September 1986) p. 3743.Google Scholar
99.Cartales, P., Sprechsaal 121(4) (1988), p. 262263.Google Scholar
100.Busby, T.S. and Mackintosh, J.R., Glass 10 (1987).Google Scholar
101.Norton, , Glass Tech. 10(6) (1969) p. 156163.Google Scholar