Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T06:06:25.369Z Has data issue: false hasContentIssue false

Processing of nanostructured metals and alloys via plastic deformation

Published online by Cambridge University Press:  31 January 2011

Yuntian Zhu
Affiliation:
North Carolina State University, Raleigh, NC 27695, USA; [email protected]
Ruslan Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, 12K.Marx St. Ufa 450000, Russia; e-mail [email protected]
Terence G. Langdon
Affiliation:
University of Southern California, Los Angeles, CA 90089, USA; [email protected]
Nobuhiro Tsuji
Affiliation:
Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606–8502, Japan; [email protected]
Ke Lu
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Rd., Shenyang 110016, China; [email protected]
Get access

Abstract

Plastic deformation can effectively produce nanostructured metals and alloys in bulk or surface-layer forms that are suitable for practical structural or functional applications. Such nanostructured materials are porosity-free and contamination-free, and therefore they are ideal for studying fundamental mechanisms and mechanical properties. In this article, we first give an overview of the principles of grain refinement by plastic deformation and an introduction to the reported processing techniques. Then the four most-developed and promising techniques will be described in detail: equal-channel angular pressing, high-pressure torsion, accumulative roll bonding for bulk nanostructured metals, and surface mechanical attrition treatment for nanostructured surface layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Valiev, R.Z., Islamgaliev, R., Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
2. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., JOM 58 (4), 33 (2006).Google Scholar
3. Zhu, Y.T., Liao, X.Z., Nat. Mater. 3, 351 (2004).Google Scholar
4. Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
5. Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., Zhu, Y.T., Scripta Mater. 51, 225 (2004).Google Scholar
6. La, P.Q., Ma, J.Q., Zhu, Y.T., Yang, J., Lu, W.M., Xue, Q.J., Valiev, R.Z., Acta Mater. 53, 5167 (2005).CrossRefGoogle Scholar
7. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
8. Bay, B., Hansen, N., Hughes, D.A., Kuhlmannwilsdorf, D., Acta Metall. Mater. 40, 205 (1992).Google Scholar
9. Huang, J.Y., Zhu, Y.T., Jiang, H., Lowe, T.C., Acta Mater. 49, 1497 (2001).Google Scholar
10. Lu, K., Hansen, N., Scripta Mater. 60, 1033 (2009).CrossRefGoogle Scholar
11. Taylor, G.I., J. Inst. Met. 62, 307 (1938).Google Scholar
12. Lu, K., Lu, J., J. Mater. Sci. Technol. 15, 193 (1999).CrossRefGoogle Scholar
13. Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J., Lu, K., Acta Mater. 50, 2075 (2002).CrossRefGoogle Scholar
14. Zhang, H.W., Hei, Z.K., Liu, G., Lu, J., Lu, K., Acta Mater. 51, 1871 (2003).CrossRefGoogle Scholar
15. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., Lu, K., Acta Mater. 50, 4603 (2002).CrossRefGoogle Scholar
16. Zhu, Y.T., Butt, D.P., in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Ed. (American Scientific Publishers, Stevenson Ranch, CA, 2003), Vol. 6, p. 853.Google Scholar
17. Koch, C.C., Nanostruct. Mater. 9, 13 (1997).CrossRefGoogle Scholar
18. Perez, R.J., Jiang, H.G., Dogan, C.P., Lavernia, E.J., Metall. Mater. Trans. A 29, 2469 (1998).Google Scholar
19. Valiev, R.Z., Langdon, T.G., Prog. Mater. Sci. 51, 881 (2006).Google Scholar
20. Zhilyaev, A.P., Langdon, T.G., Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
21. Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T., Acta Mater. 47, 579 (1999).CrossRefGoogle Scholar
22. Zhu, Y.T., Jiang, H.G., Huang, J.Y., Lowe, T.C., Metall. Mater. Trans. A 32, 1559 (2001).CrossRefGoogle Scholar
23. Saito, Y., Utsunomiya, H., Suzuki, H., Sakai, A., Scripta Mater. 42, 1139 (2000).CrossRefGoogle Scholar
24. Lee, J.C., Seok, H.K., Suh, J.Y., Acta Mater. 50, 4005 (2002).CrossRefGoogle Scholar
25. Raab, G.J., Valiev, R.Z., Lowe, T.C., Zhu, Y.T., Mater. Sci. Eng. A 382, 30 (2004).CrossRefGoogle Scholar
26. Orlov, D., Beygelzimer, Y., Synkov, S., Varyukhin, V., Horita, Z., Mater. Trans. 49, 2 (2008).Google Scholar
27. Toth, L.S., Arzaghi, M., Fundenberger, J.J., Beausir, B., Bouaziz, O., Arruffat-Massion, R., Scripta Mater. 60, 175 (2009).CrossRefGoogle Scholar
28. Jiang, J.H., Ding, Y., Zuo, F.Q., Shan, A.D., Scripta Mater. 60, 905 (2009).CrossRefGoogle Scholar
29. Ji, Y.H., Park, J.J., Mater. Sci. Eng. A 499, 14 (2009).CrossRefGoogle Scholar
30. Vidal, V., Thilly, L., Lecouturier, F., Renault, P.O., Acta Mater. 54, 1063 (2006)Google Scholar
31. Dupouy, F., Askenazy, S., Peyrade, J.P., Legat, D., Phys. B 211, 43 (1995).CrossRefGoogle Scholar
32. Han, K., Embury, J.D., Sims, J.R., Campbell, L.J., Schneider-Muntau, H.J., Pantsyrnyi, V.I., Shlkov, A., Nikulin, A., Vorobleva, A., Mater. Sci. Eng. A 267, 99 (1999).Google Scholar
33. Segal, V.M., Rezníkov, V.I., Drobyshevskly, A.E., Kopylov, V.I., Russ. Metall 99 (1981).Google Scholar
34. Nakashlma, K., Horita, Z., Nemoto, M., Langdon, T.G., Mater. Sci. Eng. A 281 82 (2000).Google Scholar
35. Iwahashl, Y., Wang, J.T., Horita, Z., Nemoto, M., Langdon, T.G., Scripta Mater. 35, 143 (1996).Google Scholar
36. Utyashev, F.Z., Enlkeev, F.U., Latysh, V.V., Ann. Chim. Sci. Mat. 21, 379 (1996).Google Scholar
37. Valiev, R.Z., Krasllnlkov, N.A., Tsenev, N.K., Mater Sci. Eng. A 137, 35 (1991)Google Scholar
38. Valiev, R.Z., Korznlkov, A.V., Mulyukov, R.R., Mater Sci. Eng. A 168, 141 (1993)Google Scholar
39. Baik, S.C., Hellmlg, R.J., Estrin, Y., Kim, H.S., Z. Metallkd. 94, 754 (2003).Google Scholar
40. Xue, Q., Beyerlein, I.J., Alexander, D.J., Gray, G.T., Acta Mater. 55, 655 (2007)Google Scholar
41. Vinogradov, A., Suzuki, T., Hashimoto, S., Kitagawa, K., Kuznetsov, A., Dobatkin, S., Mater. Sci. Forum 503–504, 971 (2006).CrossRefGoogle Scholar
42. Iwahashl, Y., Horita, Z., Nemoto, M., Langdon, T.G., Acta Mater. 45, 4733 (1997)CrossRefGoogle Scholar
43. Bridgman, P.W., Phys. Rev. 48, 825 (1935).Google Scholar
44. Xu, C., Horita, Z., Langdon, T.G., Acta Mater. 56, 5168 (2008).CrossRefGoogle Scholar
45. Zhllyaev, A.P., Nurlslamova, G.V., Kim, B.K., Baro, M.D., Szpunar, J.A., Langdon, T.G., Acta Mater. 51, 753 (2003).CrossRefGoogle Scholar
46. Estrin, Y., Molotnikov, A., Davles, C.H.J., Lapovok, R., J. Mech. Phys. Solids 56, 1186 (2008).Google Scholar
47. Kawasaki, M., Ahn, B., Langdon, T.G., Acta Mater. 58, 919 (2010).Google Scholar
48. Cao, Y., Wang, Y.B., Alhajeri, S.N., Liao, X.Z., Zheng, W.L., Ringer, S.P., Langdon, T.G., Zhu, Y.T., J. Mater. Sci. 45, 765 (2010).CrossRefGoogle Scholar
49. Zhllyaev, A.P., Glmazov, A.A., Raab, G.I., Langdon, T.G., Mater. Sci. Eng. A 486 123 (2008).CrossRefGoogle Scholar
50. Perez-Prado, M.T., Zhllyaev, A.P., Phys. Rev. Lett. 102, 175504 (2009).CrossRefGoogle Scholar
51. Huang, J.Y., Zhu, Y.T., Llao, X.Z., Valiev, R.Z., Philos. Mag. Lett 84, 183 (2004).Google Scholar
52. Šakal, G., Nakamura, K., Horita, Z., Langdon, T.G., Mater. Sci. Eng. A 406, 268 (2005).Google Scholar
53. Salto, Y., Tsujl, N., Utsunomiya, H., Šakal, T., Hong, R.G., Scripta Mater. 39 1221 (1998).Google Scholar
54. Tsujl, N., Salto, Y., Lee, S.H., Minammo, Y., Adv. Eng. Mater. 5, 338 (2003).Google Scholar
55. Tsujl, N., Production of Bulk Nanostructured Metals by Accumulative Roll Bonding (ARB) Process. (Nova Scientific Publishers, CA, 2006).Google Scholar
56. Atzmon, M., Unruh, K.M., Johnson, W.L., J. Appl. Phys. 58, 3865 (1985).Google Scholar
57. Yasuna, K., Terauchl, M., Otsukl, A., Ishihara, K.N., Shlngu, P.H., J. Appl. Phys. 82, 2435 (1997).CrossRefGoogle Scholar
58. Ohsakl, S., Kato, S., Tsujl, N., Ohkubo, T., Hono, K., Acta Mater. 55, 2885 (2007).Google Scholar
59. Huang, X., Tsujl, N., Hansen, N., Minammo, Y., Mater. Sci. Eng. A 340, 265 (2003).CrossRefGoogle Scholar
60. Tsujl, N., Adv. Eng. Mater. 12, 701 (2010).Google Scholar
61. Tsujl, N., Ito, Y., Saito, Y., Minammo, Y., Scripta Mater. 47, 893 (2002).Google Scholar
62. Tsujl, N., Okuno, S., Koizumi, Y., Minammo, Y., Mater. Trans. 45, 2272 (2004)Google Scholar
63. Huang, X.X., Hansen, N., Tsujl, N., Science 312, 249 (2006).Google Scholar
64. Lu, K., Lu, J., Mater. Sci. Eng. A 375377, 38 (2004).Google Scholar
65. Li, Y.S., Zhang, Y., Tao, N.R., Lu, K., Acta Mater. 57, 761 (2009).Google Scholar
66. Wang, K., Tao, N.R., Liu, G., Lu, J., Lu, K., Acta Mater. 54, 5281 (2006).Google Scholar
67. Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., Lu, J., Acta Mater. 52, 4101 (2004)Google Scholar
68. Zhou, L., Liu, G., Ma, X.L., Lu, K., Acta Mater. 56, 78 (2008).CrossRefGoogle Scholar
69. Li, W.L., Tao, N.R., Lu, K., Scripta Mater. 59, 546 (2008).Google Scholar