Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:03:13.851Z Has data issue: false hasContentIssue false

Printed circuit board technology inspired stretchable circuits

Published online by Cambridge University Press:  12 March 2012

J. Vanfleteren
Affiliation:
Centre for Microsystems Technology, Ghent University and Interuniversity Microelectronics Centre, Ghent, Belgium; [email protected]
M. Gonzalez
Affiliation:
Interuniversity Microelectronics Centre, Leuven, Belgium; [email protected]
F. Bossuyt
Affiliation:
Centre for Microsystems Technology, Ghent University and Interuniversity Microelectronics Centre, Ghent, Belgium; [email protected]
Y.-Y. Hsu
Affiliation:
MC10 Inc., Cambridge, MA 02140, USA
T. Vervust
Affiliation:
Centre for Microsystems Technology, Ghent University and Interuniversity Microelectronics Centre, Ghent, Belgium; [email protected]
I. De Wolf
Affiliation:
Interuniversity Microelectronics Centre and Katholieke Universiteit Leuven, Belgium; [email protected]
M. Jablonski
Affiliation:
Centre for Microsystems Technology, Ghent University and Interuniversity Microelectronics Centre, Ghent, Belgium; [email protected]
Get access

Abstract

In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology. Similar to PCBs, standard packaged, rigid components are assembled on copper contact pads using lead-free solder reflow processes. Stretchability is obtained by shaping the copper tracks as horseshoe-shaped meanders. Elastic materials, predominantly polydimethylsiloxanes, are used to embed the conductors and the components, thus serving as a circuit carrier. We describe mechanical modeling, aimed at optimizing the build-up toward maximum mechanical reliability of the structures. Details on the production process, reliability assessment, and a number of functional demonstrators are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Maghribi, M., Hamilton, J., Polla, D., Rose, K., Wilson, T., Krulevitch, P., in 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine and Biology (May 2002), pp. 8083.Google Scholar
2.Lacour, S., Wagner, S., Huang, Z., Suo, Z., Appl. Phys. Lett. 82, 2404 (2003).CrossRefGoogle Scholar
3.Gray, D.S., Tien, J., Chen, C.S., Adv. Mater. 16 (5), 393 (2004).CrossRefGoogle Scholar
4.Kim, H.-J., Son, C., Ziaie, B., Appl. Phys. Lett. 92, 011904 (2008).CrossRefGoogle Scholar
5.Khang, D.-Y., Jiang, H., Huang, Y., Rogers, J., Science 311 (5758), 208 (2006).CrossRefGoogle Scholar
6.Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., PNAS 102 (35), 12321 (2005).CrossRefGoogle Scholar
7.Bossuyt, F., Guenther, J., Loher, T., Seckel, M., Sterken, T., de Vries, J., Microelectron. Reliab. 51 (3), 628 (2011).CrossRefGoogle Scholar
8.Fjelstad, J., Vanfleteren, J., Flexible Circuit Technology, 4th ed. (BR Publishing, Seaside, OR), pp. 478513 (2011).Google Scholar
9.Bossuyt, F., Vervust, T., Axisa, F., Vanfleteren, J., European Microelectronics and Packaging Conference. Rimini, Italy, 15–18 June 2009.Google Scholar
10.Ostmann, A., Loher, T., Seckel, M., Bottcher, L., Reichl, H., Proc. IMPACT 3rd Int. Conf. 22–24 October 2008.Google Scholar
11.Gonzalez, M., Vandevelde, B., Christiaens, W., Hsu, Y.Y., Iker, F., Bossuyt, F., van der Sluis, O., Timmermans, P.. Microelectron. Reliab. 51, 1069 (2011).CrossRefGoogle Scholar
12.Rogers, J.A., Transducers 2009, Denver, CO, June 21–25, 2009, p. 1602.Google Scholar
13.Song, J., Jiang, H., Choi, W.M., Khang, D.Y., Huang, Y., Rogers, J.A., Journal of Applied Physics 103, 1 (2008).Google Scholar
14.Gonzalez, M., Axisa, F., Vanden Bulcke, M., Brosteaux, D., Vandevelde, B., Vanfleteren, J., Microelectron. Reliab. 48 (6), 825 (2008).CrossRefGoogle Scholar
15.Hsu, Y.Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren, J., De Wolf, I., Thin Solid Films 519 (7), 2225 (2011).CrossRefGoogle Scholar
16.Hsu, Y.Y., Gonzalez, M., Bossuyt, F., Vanfleteren, J., De Wolf, I., IEEE Trans. Electron Devices 58 (8), 2680 (2011).CrossRefGoogle Scholar
17.Axisa, F., Bossuyt, F., Vanfleteren, J., Proc. 2nd IEEE ESTC Conf., Greenwich, London, UK, 1–4 September 2008, pp. 1387–1390.Google Scholar
18.www.stella-project.de.Google Scholar
19.Axisa, F., Jourand, P., Lippens, E., Rymarczyk-Machal, M., De Smet, N., Schacht, E., Vanfleteren, J., Puers, R., Cornelissen, R., Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–20, pp. 4864–4867 (2009).Google Scholar
20.Wu, J., Liu, Z.J., Song, J., Huang, Y., Hwang, K.C., Zhang, Y.W., Rogers, J.A., Appl. Phys. Lett. 99, 6 (2011).Google Scholar
21.Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., Martin, R.. Second International Symposium on Wearable Computers, 116–122 (1998).Google Scholar
22.Vervust, T., Bossuyt, F., Axisa, F., Vanfleteren, J., Proc. MRS Spring Meeting, Symp. JJ, San Francisco, CA, 8–9 April 2010, 1271, p. 6.CrossRefGoogle Scholar
23.Missinne, J., Van Steenberge, G., Van Hoe, B., Van Coillie, K., Van Gijseghem, T., Dubruel, P., Vanfleteren, J., Van Daele, P., Proceedings of SPIE-The International Society for Optical Engineering, 7221 (2009).Google Scholar
24.Sterken, T., Vanfleteren, J., Torfs, T., Op de Beeck, M., Bossuyt, F., Van Hoof, C., Proc. 33rd IEEE EMBC Conf. Boston, MA, 30 August– 3 September 2011, p. 4.Google Scholar