Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:14:13.408Z Has data issue: false hasContentIssue false

Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review

Published online by Cambridge University Press:  06 November 2019

Boxuan Cao
Affiliation:
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong; [email protected]
Tao Yang
Affiliation:
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong; [email protected]
Wei-hong Liu
Affiliation:
Department of Materials Science and Engineering, Harbin Institute of Technology, China; [email protected]
C.T. Liu
Affiliation:
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong; [email protected]
Get access

Abstract

Conventional alloy design based on a single primary element has reached its limits in terms of performance optimization. An alloy design strategy with multi-principal elements has recently been uncovered to overcome this bottleneck. Multicomponent alloys, generally referred to as high-entropy alloys (HEAs), exhibit many promising properties, especially outstanding mechanical performance at cryogenic, ambient, and elevated temperatures. In this article, we focus on precipitation-hardened HEAs, which are potential candidates for next-generation structural materials, especially at high temperatures. The key issues involved include precipitation behaviors, phase stability, and phase control, all of which provide useful guidelines for further development of high-temperature materials with superior performance. In particular, we address the formation of cellular γ′ precipitates at grain boundaries, which is closely related to the embrittlement of HEAs at intermediate temperatures. Critical issues and design strategies in developing HEAs for high-temperature applications are also discussed.

Type
High-Temperature Materials for Structural Applications
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I., Knight, P., Vincent, A., Mater. Sci. Eng. A 375, 213 (2004).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., George, E.P., Acta Mater . 61, 5743 (2013).CrossRefGoogle Scholar
Wu, Y., Liu, W., Wang, X., Ma, D., Stoica, A.D., Nieh, T., He, Z., Lu, Z., Appl. Phys. Lett. 104, 051910 (2014).CrossRefGoogle Scholar
Zhang, J., Wang, J., Harada, H., Koizumi, Y., Acta Mater . 53, 4623 (2005).CrossRefGoogle Scholar
Seidman, D.N., Marquis, E.A., Dunand, D.C., Acta Mater . 50, 4021 (2002).CrossRefGoogle Scholar
Nie, J., Muddle, B., Acta Mater . 48, 1691 (2000).CrossRefGoogle Scholar
Jiao, Z., Luan, J., Miller, M., Liu, C.T., Acta Mater . 97, 58 (2015).CrossRefGoogle Scholar
Yang, T., Zhao, Y., Tong, Y., Jiao, Z., Wei, J., Cai, J., Han, X., Chen, D., Hu, A., Kai, J.J., Lu, K., Liu, Y., Liu, C.T., Science 362, 933 (2018).CrossRefGoogle Scholar
He, J., Wang, H., Huang, H., Xu, X., Chen, M., Wu, Y., Liu, X., Nieh, T., An, K., Lu, Z., Acta Mater . 102, 187 (2016).CrossRefGoogle Scholar
Yang, T., Zhao, Y., Luan, J., Han, B., Wei, J., Kai, J., Liu, C.T., Scr. Mater . 164, 30 (2019).CrossRefGoogle Scholar
He, F., Chen, D., Han, B., Wu, Q., Wang, Z., Wei, S., Wei, D., Wang, J., Liu, C.T., Kai, J.-j., Acta Mater . 167, 275 (2019).CrossRefGoogle Scholar
Liu, W., Lu, Z., He, J., Luan, J., Wang, Z., Liu, B., Liu, Y., Chen, M., Liu, C.T., Acta Mater . 116, 332 (2016).CrossRefGoogle Scholar
Ming, K., Bi, X., Wang, J., Scr. Mater . 137, 88 (2017).CrossRefGoogle Scholar
Liu, W., He, J., Huang, H., Wang, H., Lu, Z., Liu, C.T., Intermetallics 60, 1 (2015).CrossRefGoogle Scholar
Wang, Q., Ma, Y., Jiang, B., Li, X., Shi, Y., Dong, C., Liaw, P.K., Scr. Mater . 120, 85 (2016).CrossRefGoogle Scholar
Gwalani, B., Soni, V., Choudhuri, D., Lee, M., Hwang, J., Nam, S., Ryu, H., Hong, S.H., Banerjee, R., Scr. Mater . 123, 130 (2016).CrossRefGoogle Scholar
Li, Z., Acta Mater . 164, 400 (2019).CrossRefGoogle Scholar
Sims, C.T., Stoloff, N.S., Hagel, W.C., Superalloys II (Wiley, New York, 1987).Google Scholar
Rae, C.M., Reed, R.C., Acta Mater . 49, 4113 (2001).CrossRefGoogle Scholar
Zhao, Y., Yang, T., Tong, Y., Wang, J., Luan, J., Jiao, Z., Chen, D., Yang, Y., Hu, A., Liu, C.T., Acta Mater . 138, 72 (2017).CrossRefGoogle Scholar
Lu, Z., Wang, H., Chen, M., Baker, I., Yeh, J., Liu, C.T., Nieh, T.G., Intermetallics 66, 67 (2015).CrossRefGoogle Scholar
Manriquez, J.A., Bretz, P.L., Rabenberg, L., Tien, J., “The High Temperature Stability of IN718 Derivative Alloys,” Superalloys 1992, Antolovich, S.D., Stusrud, R.W., MacKay, R.A., Anton, D.L., Khan, T., Kissinger, R.D., Klarstrom, D.L., Eds., (The Minerals, Metals & Materials Society, Warrendale, PA, 1992), p. 507.Google Scholar
Tsao, T.K., Yeh, A.C., Kuo, C.M., Murakami, H., Adv. Eng. Mater. 19, 1600475 (2017).CrossRefGoogle Scholar
Caron, P., Khan, T., Proc. Mater. Adv. Power Eng. 897 (1998).Google Scholar
Zhao, Y., Chen, H., Lu, Z., Nieh, T., Acta Mater . 147, 184 (2018).CrossRefGoogle Scholar
Zhao, Y., Yang, T., Han, B., Luan, J., Chen, D., Kai, W., Liu, C.T., Kai, J.J., Mater. Res. Lett. 7, 152 (2019).CrossRefGoogle Scholar
Gwalani, B., Choudhuri, D., Soni, V., Ren, Y., Styles, M., Hwang, J., Nam, S., Ryu, H., Hong, S.H., Banerjee, R., Acta Mater . 129, 170 (2017).CrossRefGoogle Scholar
Haas, S., Manzoni, A.M., Krieg, F., Glatzel, U., Entropy (Basel) 21, 169 (2019).CrossRefGoogle Scholar
Tsao, T.K., Yeh, A.C., Kuo, C.M., Kakehi, K., Murakami, H., Yeh, J.W., Jian, S.R., Sci. Rep. 7, 12658 (2017).CrossRefGoogle Scholar
Xu, X., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T., Liu, C.T., Chen, M., Acta Mater . 84, 145 (2015).CrossRefGoogle Scholar
Daoud, H., Manzoni, A., Wanderka, N., Glatzel, U., JOM 67, 2271 (2015).CrossRefGoogle Scholar
Manzoni, A., Singh, S., Daoud, H., Popp, R., Völkl, R., Glatzel, U., Wanderka, N., Entropy (Basel) 18, 104 (2016).CrossRefGoogle Scholar
Antonov, S., Detrois, M., Tin, S., Metall. Mater. Trans. A 49, 305 (2018).CrossRefGoogle Scholar
Chang, Y.J., Yeh, A.C., J. Alloys Compd. 653, 379 (2015).CrossRefGoogle Scholar
Chang, Y.J., Yeh, A.C., Mater. Chem. Phys. 210, 111 (2018).CrossRefGoogle Scholar
Kuo, C.M., Tsai, C.W., Mater. Chem. Phys. 210, 103 (2018).CrossRefGoogle Scholar
Williams, D.B., Edington, J.W., Acta Metall . 24, 323 (1976).CrossRefGoogle Scholar
Zhao, J.C., Notis, M.R., Acta Mater . 46, 4203 (1998).CrossRefGoogle Scholar
Nystrom, J.D., Pollock, T.M., Murphy, W.H., Garg, A., Metall. Mater. Trans. A 28, 2443 (1997).CrossRefGoogle Scholar
Jensen, R.R., Tien, J.K., Metall. Trans. A 16, 1049 (1985).CrossRefGoogle Scholar
Rao, G.A., Srinivas, M., Sarma, D., Mater. Sci. Eng. A 435, 84 (2006).CrossRefGoogle Scholar
Heatherly, L., George, E., Acta Mater . 49, 289 (2001).CrossRefGoogle Scholar
Bricknell, R., Woodford, D., Metall. Trans. A 12, 425 (1981).CrossRefGoogle Scholar
Takasugi, T., George, E., Pope, D., Izumi, O., Scr. Metall . 19, 551 (1985).CrossRefGoogle Scholar
Zheng, L., Chellali, R., Schlesiger, R., Baither, D., Schmitz, G., Scr. Mater . 65, 428 (2011).CrossRefGoogle Scholar
Kraai, D., Floreen, S., Trans. Metall. Soc. AIME 230, 833 (1964).Google Scholar
George, E., Liu, C., Pope, D., Phys. Status Solidi A 160, 517 (1997).3.0.CO;2-S>CrossRefGoogle Scholar
He, J.Y., Wang, H., Wu, Y., Liu, X.J., Mao, H.H., Nieh, T.G., Lu, Z.P., Intermetallics 79, 41 (2016).CrossRefGoogle Scholar
Manzoni, A.M., Daoud, H.M., Voelkl, R., Glatzel, U., Wanderka, N., Ultramicroscopy 159, 265 (2015).CrossRefGoogle Scholar
Tsao, T.K., Yeh, A.C., Kuo, C.M., Murakami, H., Adv. Eng. Mater. 19 (2017).CrossRefGoogle Scholar
Manzoni, A., Haas, S., Daoud, H., Glatzel, U., Förster, C., Wanderka, N., Entropy (Basel) 20, 646 (2018).CrossRefGoogle Scholar