Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:14:34.550Z Has data issue: false hasContentIssue false

Post-treatment techniques for high-performance perovskite solar cells

Published online by Cambridge University Press:  16 June 2020

Shuang Xiao
Affiliation:
School of Chemical Biology and Biotechnology, Peking University, China; [email protected]
Yu Li
Affiliation:
School of Chemical Biology and Biotechnology, Peking University, China; [email protected]
Shizhao Zheng
Affiliation:
School of Chemical Biology and Biotechnology, Peking University, China; [email protected]
Shihe Yang
Affiliation:
Peking University, China; and Hong Kong University of Science and Technology, Hong Kong; [email protected]
Get access

Abstract

Perovskite solar cells are poised to be a game changer in photovoltaic technology with a current certified efficiency of 25.2%, already surpassing that for multicrystalline silicon solar cells. On the path to higher efficiencies and much needed higher stability, however, interfacial and bulk defects in the active material should be carefully engineered or passivated. Post-treatment techniques show great potential to address defect issues (e.g., by coarsening the perovskite grains or establishing an interfacial heterogeneous layer). In this article, we summarize current fundamental understanding of the major energy-loss routes in perovskite materials and devices, including bulk/interfacial defects mediated nonradiative recombination and band mismatch-induced recombination. This is followed by a survey of the important post-treatment techniques developed over the past few years to minimize energy loss in perovskite solar cells, including solvent annealing, amine halide solution dripping-induced Ostwald ripening, three-dimensional–two-dimensional interface layer from phenethylammonium iodide (PEAI) dripping, and wide bandgap interface layer engineering from n-hexyl trimethylammonium bromide washing. Finally, we provide a prospective view about further developments of post-treatment techniques.

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
National Renewable Energy Laboratory (NREL), Research Cell Efficiency Records, https://www.nrel.gov/pv (2019).Google Scholar
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G., Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395 (2013).CrossRefGoogle Scholar
Weller, M.T., Weber, O.J., Frost, J.M., Walsh, A., J. Phys. Chem. Lett. 6, 3209 (2015).CrossRefGoogle Scholar
Yin, W.J., Shi, T., Yan, Y., Adv. Mater. 26, 4653 (2014).CrossRefGoogle Scholar
Tress, W., Adv. Energy Mater. 7, (2017).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499, 316 (2013).CrossRefGoogle Scholar
Bai, Y., Chen, H., Xiao, S., Xue, Q., Zhang, T., Zhu, Z., Li, Q., Hu, C., Yang, Y., Hu, Z., Huang, F., Wong, K.S., Yip, H.L., Yang, S.H., Adv. Funct. Mater. 26, 2950 (2016).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seok, S., Nat. Mater. 13, 897 (2014).CrossRefGoogle Scholar
Bi, D., Yi, C., Luo, J., Décoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., Grätzel, M., Nat. Energy 1, 16142 (2016).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Il Seok, S., Science 348, 1234 (2015).CrossRefGoogle Scholar
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J., Nat. Photonics 13, 460 (2019).CrossRefGoogle Scholar
Rühle, S., Sol. Energy 130, 139 (2016).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Il Seok, S., Nature 517, 476 (2015).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Seo, J.Y., Domanski, K., Correa-Baena, J.P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., Energy Environ. Sci. 9, 1989 (2016).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A., Grätzel, M., Science 354, 206 (2016).CrossRefGoogle Scholar
Xiao, Z., Zhou, Y., Hosono, H., Kamiya, T., Padture, N.P., Chem. Eur. J. 24, 2305 (2018).CrossRefGoogle Scholar
Min, H., Kim, M., Lee, S.-U., Kim, H., Kim, G., Choi, K., Lee, J.H., Il Seok, S., Science 366, 749 (2019).CrossRefGoogle Scholar
Sha, W.E.I., Ren, X., Chen, L., Choy, W.C.H., Appl. Phys. Lett. 106, 221104 (2015).CrossRefGoogle Scholar
Xiao, S., Chen, H., Jiang, F., Bai, Y., Zhu, Z., Zhang, T., Zheng, X., Qian, G., Hu, C., Zhou, Y., Qu, Y., Yang, S., Adv. Mater. Interfaces 3, 1600484 (2016).CrossRefGoogle Scholar
Yang, B., Dyck, O., Poplawsky, J., Keum, J., Puretzky, A., Das, S., Ivanov, I., Rouleau, C., Duscher, G., Geohegan, D., Xiao, K., J. Am. Chem. Soc. 137, 9210 (2015).CrossRefGoogle Scholar
Schulz, P., Cahen, D., Kahn, A., Chem. Rev. 119, 3349 (2019).CrossRefGoogle Scholar
Tan, H., Jain, A., Voznyy, O., Lan, X., García de Arquer, F.P., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L.N., Zhao, Y., Lu, Z.-H., Yang, Z., Hoogland, S., Sargent, E.H., Science 355, 722 (2017).CrossRefGoogle Scholar
Long, R., Liu, J., Prezhdo, O.V., J. Am. Chem. Soc. 138, 3884 (2016).CrossRefGoogle Scholar
Zhang, Y., Kim, S.G., Lee, D.K., Park, N.G., ChemSusChem 11, 1813 (2018).CrossRefGoogle Scholar
Shi, J., Xu, X., Li, D., Meng, Q., Small 11, 2472 (2015).CrossRefGoogle Scholar
Stolterfoht, M., Caprioglio, P., Wolff, C.M., Márquez, J.A., Nordmann, J., Zhang, S., Rothhardt, D., Hörmann, U., Amir, Y., Redinger, A., Kegelmann, L., Zu, F., Albrecht, S., Koch, N., Kirchartz, T., Saliba, M., Unold, T., Neher, D., Energy Environ. Sci. 12, 2778 (2019).CrossRefGoogle Scholar
Wolff, C.M., Caprioglio, P., Stolterfoht, M., Neher, D., Adv. Mater. 31, 1902762 (2019).CrossRefGoogle Scholar
Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., Sargent, E.H., Nano Lett. 14, 6281 (2014).CrossRefGoogle Scholar
Bai, Y., Xiao, S., Hu, C., Zhang, T., Meng, X., Lin, H., Yang, Y., Yang, S., Adv. Energy Mater. 7, 1701038 (2017).CrossRefGoogle Scholar
Krogmeier, B., Staub, F., Grabowski, D., Rau, U., Kirchartz, T., Sustain. Energy Fuels 2, 1027 (2018).CrossRefGoogle Scholar
Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.-Y., Noh, J.H., Seo, J., Nature 567, 511 (2019).CrossRefGoogle Scholar
Chen, J., Seo, J.Y., Park, N.G., Adv. Energy Mater. 8, 1702714 (2018).CrossRefGoogle Scholar
Bu, T., Li, J., Huang, W., Mao, W., Zheng, F., Bi, P., Hao, X., Zhong, J., Cheng, Y.B., Huang, F., J. Mater. Chem. A 7, 6793 (2019).CrossRefGoogle Scholar
Wang, Y., Ibrahim Dar, M., Ono, L.K., Zhang, T., Kan, M., Li, Y., Zhang, L., Wang, X., Yang, Y., Gao, X., Qi, Y., Grätzel, M., Zhao, Y., Science 365, 591 (2019).CrossRefGoogle Scholar
Zhuang, J., Wei, Y., Luan, Y., Chen, N., Mao, P., Cao, S., Wang, J., Nanoscale 11, 14553 (2019).CrossRefGoogle Scholar
Yang, S., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.-Y., Noh, J.H., Seo, J., Science 365, 473 (2019).CrossRefGoogle Scholar
Liu, T., Wang, Z., Lou, L., Xiao, S., Zheng, S., Yang, S., Solar RRL 3, 1900278 (2019).Google Scholar
Yang, M., Zhang, T., Schulz, P., Li, Z., Li, G., Kim, D.H., Guo, N., Berry, J.J., Zhu, K., Zhao, Y., Nat. Commun. 7, 12305 (2016).CrossRefGoogle Scholar
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J., Adv. Mater. 26, 6503 (2014).CrossRefGoogle Scholar
Wu, C., Zou, Y., Wu, T., Ban, M., Pecunia, V., Han, Y., Liu, Q., Song, T., Duhm, S., Sun, B., Adv. Funct. Mater. 27, 1700338 (2017).CrossRefGoogle Scholar
Chiang, C.H., Wu, C.G., ACS Nano 12, 10355 (2018).CrossRefGoogle Scholar
Xiao, S., Bai, Y., Meng, X., Zhang, T., Chen, H., Zheng, X., Hu, C., Qu, Y., Yang, S., Adv. Funct. Mater. 27, 1604944 (2017).CrossRefGoogle Scholar
Luo, D., Yang, W., Wang, Z., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G.F., Watts, J.F., Xu, Z., Liu, T., Chen, K., Ye, F., Wu, P., Zhao, L., Wu, J., Tu, Y., Zhang, Y., Yang, X., Zhang, W., Friend, R.H., Gong, Q., Snaith, H.J., Zhu, R., Science 360, 1442 (2018).CrossRefGoogle Scholar
Chen, J., Kim, S.G., Park, N.G., Adv. Mater. 30, 1801948 (2018).CrossRefGoogle Scholar
Zhang, Y., Chen, J., Lian, X., Qin, M., Li, J., Andersen, T.R., Lu, X., Wu, G., Li, H., Chen, H., Small Methods 3, 1900375 (2019).CrossRefGoogle Scholar
Pham, N.D., Tiong, V.T., Yao, D., Martens, W., Guerrero, A., Bisquert, J., Wang, H., Nano Energy 41, 476 (2017).□CrossRefGoogle Scholar