Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T01:00:14.110Z Has data issue: false hasContentIssue false

Plutonium in Crystalline Ceramics and Glasses

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The investigation of plutonium in glasses (amorphous ceramics lacking long-range order), in crystalline ceramics, and in composite materials composed of multiple crystalline or glass and crystalline phases, relieson multidisciplinary studies of physics, chemistry, and materials science. It involves the study of the plutonium atoms in materials with only short-range periodicity, as in glasses, to materials with long-range periodicity, as in crystals. The materials studied over the past 30 years include simple binary crystals, used to investigate the electronic structure of plutonium, to complex glasses and ceramics selected not only for the safety and durability that they provide for the immobilization of nuclear waste and plutonium, but also for the high flexibility they offer in composition. The lack of long-range order at the atomic level in glasses permits the inclusion of abroad range of waste elements, but it renders more difficult the interpretation of data from many commonly used experimental techniques. Regardless of the challenge, much of the research conducted in this field over the past few decades has been motivated by the use of plutonium as a surrogate for all nuclear-waste actinides or on its own in immobilization studies, in order to develop a durable glass or ceramic matrix that can resist leaching and mobilization of the plutonium on a geologic time scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jacquet-Francillon, N., Bonniaud, R., and Sombret, C., Radiochim. Acta 25 (1978) p.231.CrossRefGoogle Scholar
2.Bonniaud, R.A., Jacquet-Francillon, N.R., and Sombret, C.G., in Scientific Basis for Nuclear Waste Management II, Vol.15, edited by Brookins, D.G. (Elsevier Science, 1983) p.183.Google Scholar
3.Karraker, D.G., J. Am. Ceram. Soc. 65 (1982) p.53.CrossRefGoogle Scholar
4.Lam, D.J., Veal, B.W., and Paulikas, A.P., in X-Ray Photoemission Spectroscopy (XPS) Study of Uranium, Neptunium, and Plutonium Oxides in Silicates-Based Glasses (ACS Symp. Ser. 216), edited by Carnall, W.T. and Choppin, G.R. (American Chemical Society, Washington, DC, 1983) p.145.Google Scholar
5.Weber, W.J. and Roberts, F.P., Nucl. Technol. 60 (1983) p.178.CrossRefGoogle Scholar
6.Lutze, W. and Ewing, R., eds., Radioactive Waste Forms for the Future (North-Holland Press, Amsterdam, 1988).Google Scholar
7.High-Level Waste Borosilicate Glass: A Compendium of Corrosion Characteristics, Vol.1, DOE-EM-0177 (U.S. Department of Energy, Office of Waste Management, 1994).Google Scholar
8.National Academy of Sciences, Panofsky, W.K.H. (Study Chair), “Management and Disposition of Excess Weapons Plutonium,” Committee on International Security and Arms Control (National Academy Press, Washington, DC, 1994).Google Scholar
9.Cochran, S.G., Dunlop, W.H., Edmunds, T.A., MaClean, L.M., and Gould, T.H., Fissile Material Disposition Program—Final Immobilization Form Assessment and Recommendation, UCRL-ID-128705 (1997).CrossRefGoogle Scholar
10.Gray, L. and Gould, T.H., Immobilization Technology Down-Selection Radiation Barrier Approach, UCRL-ID-127320 (1997).CrossRefGoogle Scholar
11.Kuehn, N.H., Can-in-Canister Immobilization Demonstration, WSRC-MS-96-0072 (Westinghouse Savannah River Co., Aiken, SC, 1996).Google Scholar
12.Kuehn, N.H., Can-in-Canister Cold Demonstration in DWPF, WSRC-TR-96-0226 (Westinghouse Savannah River Co., Aiken, SC, 1996).Google Scholar
13.Rankin, D.T. and Gould, T.H., “Plutonium Immobilization Program: Can-in-Canister,” presented at the 101st American Ceramic Society Meeting, Indianapolis, IN, 1999.Google Scholar
14.Joint U.S./Russian Plutonium Disposition Study, Appendices to the Immobilization Alternative, Westinghouse Savannah River Co. Report WSRC-TR-96-0043, Rev. 5, August 15, 1996 (U.S. Department of Energy, Washington, DC, 1996).Google Scholar
15.Matyunin, Y.I. and Jardine, L.J., Investigations of Plutonium Immobilization into the Vitreous Com-positions, Lawrence Livermore National Laboratory Preprint UCRL-JC-130180, Rev. 1 (1998).Google Scholar
16.Bonniaud, R.A., Jacquet-Francillon, N.R., and Sombret, C.G., in Proc. Int. Symp. on the Scientific Basis for Nuclear Waste Management (Plenum Press, New York, 1980) p.117.CrossRefGoogle Scholar
17.Marples, J.A.C., Dalton, J.T., Hall, A.H., Hough, A., Boult, K.A., Malow, G., Beran, V., Borchardt, J., Lutze, W., and Matiske, H., Jacquet-Francillon, N., Laude, F., Magnier, A., Vernaz, E., Sombret, C., Heimerl, W., and Schutz-Lembach, G., Eur. Appl. Res. Rept.-Nucl. Sci. Technol. 3 (3) (1981) p.395.Google Scholar
18.Hess, N.J., Weber, W.J., and Conradson, S.D., J. Nucl. Mater. 254 (1998) p.175.CrossRefGoogle Scholar
19.Plodinec, M.J., Development of Glass Compositions for Immobilization of SRP Waste, DP-1517, Savannah River Site (1979).CrossRefGoogle Scholar
20.Bates, J.K., Emery, J.W., Hoh, J.C., and Johnson, T.R., Ceram. Trans. 61 (1995) p.447.Google Scholar
21.Bibler, N.E., Ramsey, W.G., Meaker, T.F., and Pareizs, J.M., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, 1996) p.65.Google Scholar
22.Vienna, J.D., Alexander, D.L., Li, H., Schweiger, M.J., Peeler, D.K., and Meaker, T.F., Plutonium Dioxide Dissolution in Glass, PNNL-113446 (Pacific Northwest National Laboratory, 1996).CrossRefGoogle Scholar
23.Bates, J.K., Ellison, A.J.G., Emery, J.W., and Hoh, J.C., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, 1996) p.57.Google Scholar
24.Mertz, C.J., Bakel, A.J., Bates, J.K., Chamberlain, D.B., Fortner, J.A., Hanchar, J.M., and Wolf, S.F., Ceram. Trans. 87 (1998) p.211.Google Scholar
25.Feng, X., Li, H., Li, L.L.D.L., Darab, J.G., Schweiger, M.J., Vienna, J.D., Bunker, B.C., Allen, P.G., Bucher, J.J., Craig, I.M., Edelson, N.M., Shuh, D.K., Ewing, R.C., Wang, L.M., and Vance, E.R., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IV, Vol. 93, edited by Marra, J.C. and Chandler, G.T. (American Ceramic Society, Westerville, OH, 1999) p.409.Google Scholar
26.Ramsey, W.G., Bibler, N.E., and Meaker, T.F., “Compositions and Durabilities of Glasses for Immobilization of Plutonium and Uranium,” Waste Management '95, “HLW, LLW, Mixed Wastes and Environmental Restoration-Working Towards a Clearer Environment,” CD-ROM record 23,828 (1995).CrossRefGoogle Scholar
27.Meaker, T.F., Ramsey, W.G., Pareizs, J.M., Karraker, D.G., and Day, D.E., Ceram. Trans. 72 (1996) p.409.Google Scholar
28.Kushnikov, V.V., Matyunin, Yu.I., Smelova, T.V., and Demin, A.V., in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J. and Triay, I.R. (Mater. Res. Soc. Symp. Proc. 465, Pittsburgh, PA, 1997) p.55.Google Scholar
29.Chikalla, T.D. and Turcotte, R.P., Radiat. Eff. 19 (1973) p.93.CrossRefGoogle Scholar
30.Clinard, F.W. Jr, Hobbs, L.W., Land, C.C., Peterson, D.E., Rohr, D.L., and Roof, R.B., J.Nucl. Mater. 105 (1982) p.248.CrossRefGoogle Scholar
31.Clinard, F.W. Jr, Peterson, D.E., and Rohr, D.L., J. Nucl. Mater. 126 (1984) p.245.CrossRefGoogle Scholar
32.Clinard, F.W. Jr, Rohr, D.L., and Roof, R.B., Nucl. Instrum. Methods Phys. Res., Sect. B 1 (1984) p.581.CrossRefGoogle Scholar
33.Clinard, F.W. Jr, Am. Ceram. Soc. Bull. 65 (8) (1986) p.1181.Google Scholar
34.Weber, W.J., J.Mater. Res. 5 (1990) p.2687.CrossRefGoogle Scholar
35.Weber, W.J., J. Am. Ceram. Soc. 76 (1993) p.1729.CrossRefGoogle Scholar
36.Abraham, M.M., Boatner, L.A., Finch, C.B., and Reynolds, R.W., Phys. Rev. B 3 (1971) p.2864.CrossRefGoogle Scholar
37.Kolbe, W., Edelstein, N., Finch, C.B., and Abraham, M.M., J. Chem. Phys. 60 (1974) p.607.CrossRefGoogle Scholar
38.Boatner, L.A. and Abraham, M.M., Rep. Prog. Phys. 41 (1978) p.87.CrossRefGoogle Scholar
39.Kot, W.K., Edelstein, N.M., Abraham, M.M., and Boatner, L.A., Phys. Rev. B 47 (1993) p.3412.CrossRefGoogle Scholar
40.Poirot, I.S., Kot, W.K., Edelstein, N.M., Abraham, M.M., Finch, C.B., and Boatner, L.A., Phys. Rev. B 39 (1989) p.6388.CrossRefGoogle Scholar
41.Matzke, Hj., Nucl. Instrum. Methods Phys. Res., Sect. B 32 (1988) p.455.CrossRefGoogle Scholar
42.Ewing, R.C., Lutze, W., and Weber, W.J., J.Mater. Res. 10 (1995) p.243.CrossRefGoogle Scholar
43.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13 (1998) p.1434.CrossRefGoogle Scholar
44.Ewing, R.C., Weber, W.J., and Lutze, W., in Disposal of Weapons Plutonium, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, Dordrecht, 1996) p.65.CrossRefGoogle Scholar
45.U.S. Department of Energy Record of Decision for the Storage and Disposition of Weapons Usable Fissile Materials, Programmatic Environmental Impact Statement (U.S. Department of Energy, Washington, DC, January 1997).Google Scholar
46.Strategic Plan, Storage and Disposition of Weapons Usable Fissile Materials (U.S. Department of Energy, Washington, DC, August 1997).Google Scholar
47.Matzke, Hj. and Geel, J.van, Radwaste Mag. 3 (2) (1996) p.71.Google Scholar
48.Oversby, V.M., McPheeters, C.C., Degueldre, C., and Paratte, J.M., J. Nucl. Mater. 245 (1997) p.17.CrossRefGoogle Scholar
49.Degueldre, C., Kasemeyer, U., Botta, F., and Ledergerber, G., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, 1996) p.15.Google Scholar
50.Degueldre, C. and Paratte, J.M., J. Nucl. Mater. 274 (1999) p.1.CrossRefGoogle Scholar
51.Boczar, P.G., Gagnon, M.J.N., Chan, P.S.W., Ellis, R.J., Verrall, R.A., and Dastur, A.R., Can. Nucl. Soc. Bull. 18 (1) (1997) p.2.Google Scholar
52.Sickafus, K.E., Hanrahan, R.J. Jr, McClellan, K.J., Mitchell, J.N., Wetteland, C.J., Butte, D.P., Chodak, P., Ramsey, K.B., Blair, T.H., Chidester, K., Matzke, Hj., Yasuda, K., Verrall, R.A., and Yu, N., Am. Ceram. Soc. Bull. 78 (1999) p.69.Google Scholar
53.Browne, E., Dairiki, J.M., and Doebler, R.E., in Table of Isotopes, 7th ed., edited by Lederer, C.M. and Sherley, V.S. (John Wiley & Sons, New York, 1978) p.1457.Google Scholar
54.Boult, K.A., Dalton, J.T., Evans, J.P., Hall, A.R., Inns, A.J., Marples, J.A.C., and Paige, E.L., The Preparation of Fully Active Synroc and Its Radiation Stability—Final Report, October 1988, AERE-R-13318 (Harwell Laboratory, Harwell, UK, 1988).Google Scholar
55.Vernaz, E., Loida, A., Malow, G., Marples, J.A.C., and Matzke, Hj., in Proc. 3rd EC Conf. on Radioactive Waste Management and Disposal, edited by Cecille, L. (Elsevier, London, 1991) p.302.Google Scholar
56.Malow, G., Marples, J.A.C., and Sombret, C., in Radioactive Waste Management and Disposal, edited by Simon, R. and Orlowski, S. (Harwood Academic Publishers, Chur, Switzerland, 1980) p.341.Google Scholar
57.Marples, J.A.C., Dalton, J.T., Hall, A.R., Hough, A., Boult, K.A., Malow, G., Beran, V., Borchardt, J., Lutze, W., Matiske, H., Jacquet-Francillon, N., Laude, F., Magnier, A., Vernaz, E., Heirmerl, W., and Schutz-Lembach, G., Nucl. Instrum. Methods Phys. Res., Sect. B 32 (1988) p.480.CrossRefGoogle Scholar
58.Williford, R.E., Begg, B.D., Weber, W.J., and Hess, N.J., J. Nucl. Mater. 278 (2000) p.207.CrossRefGoogle Scholar
59.Freshley, M. and Carroll, D., Trans. Am. Nucl. Soc. 6 (1963) p.348.Google Scholar
60.National Academy of Sciences, “Glass as a Waste Form and Vitrification Technology: Summary of an International Workshop,” Board on Radioactive Waste Management (National Academy Press, Washington, DC, 1996).Google Scholar
61.Marra, J.E., Baich, M.A., Fellinger, A.P., Hardy, B.J., Jones, T.M., Miller, C.B., Miller, D.H., Peeler, D.K., Snyder, T.K., Stone, M.E., Whitehouse, J.C., and Witt, D.C., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IV, Vol. 90, edited by Marra, J.C. and Chandler, G.T. (1999) p.391.Google Scholar
62.Wicks, G.G., “Advantages and Limitations of Disposing of Pu in Glass,” presented to the Committee on International Security and Arms Control, National Academy of Sciences, Washington, DC, WSRC-MS-93-149, Westinghouse Savannah River Co. (1993).Google Scholar
63.Wicks, G.G., Plodinec, M.J., and McKibben, J.M., “Leveraging of Resources for Vitrification of Plutonium,” presented to the Immobilization Task Team on Plutonium Disposition, Aiken, SC, 1994.Google Scholar
64.Wicks, G.G., McKibben, J.M., Plodinec, M.J., and Ramsey, W.G., in Disposal of Weapon Plutonium, Disarmament Technologies, Vol. 4, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, Dordrecht, 1996).Google Scholar
65.Marshall, K.M., Marra, J.C., Coughlin, J.T., Calloway, T.B., Schumacher, R.F., Zamecnik, J.R., and Pareizs, J.M., “Development of the Plutonium Oxide Vitrification System,” Waste Management '98, March 1–5, Tucson AZ, in Proc. American Nuclear Society, Session 65, presentation No. 6, in CD-ROM only (American Nuclear Society, La Grange Park, IL, 1998).Google Scholar
66.Marshall, K.M., Marra, J.C., Coughlin, J.T., Calloway, T.B., Schumacher, R.F., Zamecnik, J.R., and Pareizs, J.M., in Proc. Third Topical Meeting on DOE Spent Nuclear Fuel and Fissile Materials Management, Vol. 1 (American Nuclear Society, La Grange Park, IL, 1998) p.388.Google Scholar
67.Schumacher, R.F., Ramsey, W.G., Johnson, F.M., Jones, T.M., Miller, D.H., and Hardy, B.J., Ceram. Trans. 87 (1998) p.3.Google Scholar
68.Paul, A., Chemistry of Glasses, 2nd ed. (Chapman & Hall, London, New York, 1990).Google Scholar
69.Vogel, W., Glass Chemistry, 2nd ed. (translation of the German 3rd ed.) (Springer-Verlag, Berlin, 1994).CrossRefGoogle Scholar
70.Peeler, D.K. and Meaker, T.F., Results of an Intra-Laboratory Study of Glass Formulation for the Immobilization of Excess Plutonium, SRT-PUM-97-0017 (Westinghouse Savannah River Co., Aiken, SC, 1997).Google Scholar
71.Peeler, D.K. (personal communications).Google Scholar
72.Wicks, G.G., Rankin, W.D., and Gore, S.L., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, 1985) p.171.Google Scholar
73.Ramsey, W.G. and Wicks, G.G., Ceram. Trans. 9 (1990) p.257.Google Scholar
74.Walker, C.T. and Riege, U., in Ceramics in Nuclear Waste Management, CONF-790420, edited by Chikalla, T.D. and Mendel, J.E. (1979) p.198.Google Scholar
75.Fellinger, A.P., Baich, M.A., Hardy, B.J., Jannik, G.T., Jones, T.M., Marra, J.E., Miller, C.B., Miller, D.H., Peeler, D.K., Snyder, T.K., Stone, M.E., and Witt, D.C., in Scientific Basis for Nuclear Waste Management XXII, edited by Wronkiewicz, D.J. and Lee, J.H. (Mater. Res. Soc. Symp. Proc. 556, Warrendale, PA, 1999) p.367.Google Scholar
76.Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., J. Mater. Res. 12 (1997) p.1946.CrossRefGoogle Scholar
77.Weber, W.J., Hess, N.J., Conradson, S.D., and Vienna, J.D., Plutonium Futures—The Science, Conf. LA-13338-C (Los Alamos National Laboratory, Los Alamos, NM, 1997) p.25.Google Scholar
78.Vernaz, E.Y. and Godon, N., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, 1992) p.37.Google Scholar
79.Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V. Govidan, J.Mater. Res. 14 (1999) p.4470.CrossRefGoogle Scholar
80.Weber, W.J. and Ewing, R.C., Science 289 (2000) p.2051.CrossRefGoogle Scholar
81. “Decades of Discovery” Home Page, U.S. Department of Energy, http://www.sc.doe.gov/feature_articles_2001/June/Decades/index.html (accessed August 2001).Google Scholar
82.McGlinn, P.J., Hart, K.P., Day, R.A., Harris, J.R., Weir, J.A., and Thompson, L.E., in Scientific Basis for Nuclear Waste Management XXI, edited by McKinley, I.G. and McCombie, C. (Mater. Res. Soc. Symp. Proc. 506, Warrendale, PA, 1998) p.239.Google Scholar