Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:16:47.995Z Has data issue: false hasContentIssue false

Plasma-Immersion Ion Implantation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Plasma-immersion ion implantation (PIII) is an emerging technology for the surface engineering of semiconductors, metals, and dielectrics. It is inherently a batch-processable technique that lends itself to the implantation of large numbers of parts simultaneously. It thus offers the possibility of introducing ion implantation into manufacturing processes that have not traditionally been feasible using conventional implantation.

In PIII the part to be treated is placed in a vacuum chamber in which is generated a plasma containing the ions of the species to be implanted. The plasma based implantation system does not use the extraction and acceleration methods of conventional mass-analyzing implanters. Instead the sample is (usually) repetitively pulsed at high negative voltages (in the 2–300 kV range) to implant the surface with a flux of energetic plasma ions as shown in Figure 1. When the negative bias is applied to a conducting object immersed in a plasma, electrons are repelled from the surrounding region toward the walls of the vacuum chamber, which is usually held at ground potential. Almost all the applied voltage difference occurs across this region, which is generally known as a sheath or cathode fall region. Ions are accelerated across the sheath, producing an ion flux to the entire exposed surface of the work-piece. Because the plasma surrounds the sample and because the ions are accelerated normal to the sample surfaces, implantation occurs over all surfaces, thereby eliminating the need for elaborate target manipulation or masking systems commonly required for beam line implanters. Ions implanted in the work-piece must be replaced by an incoming flow of ions at the sheath boundary, or the sheath will continue to expand into the surrounding plasma.

Plasma densities are kept relatively low, usually between 108 and 1011 ions per cm3. Ions must be replenished near the workpiece by either diffusion or ionization since the workpiece (in effect) behaves like an ion pump. Gaseous discharges with thermionic, radio-frequency, or microwave ionization sources have been successfully used.

Surface-enhanced materials are obtained through PIII by producing chemical and microstructural changes that lead to altered electrical properties (e.g., semiconductor applications), and low-friction and superhard surfaces that are wear- and corrosion-resistant. When PIII is limited to gaseous implant species, these unique surface properties are obtained primarily through the formation of nitrides, oxides, and carbides. When applied to semiconductor applications PIII can be used to form amorphous and electrically doped layers. Plasma-immersion ion implantation can also be combined with plasma-deposition techniques to produce coatings such as diamondlike carbon (DLC) having enhanced properties. This latter variation of PIII can be operated in a high ionenergy regime so as to do ion mixing and to form highly adherent films, and in an ion-beam-assisted-deposition (IBAD)-like ion-energy regime to produce good film morphology and structure.

Type
Plasma Processing of Advanced Materials
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J., and Tran, N.C., J. Appl. Phys. 62 (1987) p. 4591.CrossRefGoogle Scholar
2.Tendys, J., Donnelly, I.J., Kenny, M.J., and Pollock, J.T.A., Appl. Phys. Lett 53 (1988) p. 2143.CrossRefGoogle Scholar
3.Oliver, W.C., Hutchings, R., and Pethica, J.B., Metall. Trans. A 15 (1984) p. 2221.CrossRefGoogle Scholar
4.Qiu, X., Conrad, J.R., Dodd, R.A., and Worzala, F.Y., Metall. Trans. A 21 (1990) p. 1663.CrossRefGoogle Scholar
5.Madapura, M.S.P., Dodd, R.A., Conrad, J.R., Plantz, D., and Worzala, F.J., J. Vac. Sci. Technol. A 8 (1990) p. 2169.CrossRefGoogle Scholar
6.Redsten, A.M., Sridharan, K., and Worzala, F.J., J. Mater. Process. Technol. 30 (1992) p. 253.CrossRefGoogle Scholar
7.Samandi, M., Pauza, A., Hatziandoniou, G., Yasbandha, H., Hutchings, R., Collins, G.A., and Tendys, J., Surf. Coat. Technol. 54/55 (1992) p. 447.CrossRefGoogle Scholar
8.Collins, G.A., Hutchings, R., and Tendys, J., Mater. Sci. Eng. A 139 (1991) p. 171.CrossRefGoogle Scholar
9.Samandi, M., Shedden, B.A., Smith, D.I., Collins, G.A., Hutchings, R., and Tendys, J., Surf. Coat. Technol. 59 (1993) p. 261.CrossRefGoogle Scholar
10.Walter, K.C., J. Vac. Sci. Technol. B 12 (1994) p. 945.CrossRefGoogle Scholar
11.Walter, K.C., Scheuer, J.T., Mclntyre, P.C., Kodai, P., Yu, N., and Nastasi, M., Surf. Coat. Technol. 84 (1–2) (1996).Google Scholar
12.Malik, S.M., Sridharan, K., Fetherston, R.P., Chen, A., and Conrad, J.R., J. Vac. Sci. Technol. B 12 (1994) p. 843.CrossRefGoogle Scholar
13.Matossian, J.N., Vajo, J.J., Wysocki, J.A., and Bellon, M.E., Surf. Coat. Technol. 62 (1993) p. 595.CrossRefGoogle Scholar
14.Collins, G.A., Hutchings, R., and Tendys, J., Surf. Coat. Technol. 59 (1993) p. 267.CrossRefGoogle Scholar
15.Hutchings, R., Collins, G.A., and Tendys, J., Surf. Coat. Technol. 51 (1992) p. 489.CrossRefGoogle Scholar
16.Hutchings, R., Kenny, M.I., Miller, D.R., and Yeung, W.Y., in Proc. 1st Aust. Int. Conf. on Surface Engineering: Practice and Prospects (Adelaide, March 1991).Google Scholar
17.Collins, G.A., Hutchings, R., Short, K.T., Tendys, J., Li, X., and Samandi, M., Surf. Coat. Technol. 74/75 (1995) p. 417.CrossRefGoogle Scholar
18.Jones, E.C. and Cheung, N.W., IEEE Electron. Dev. Lett. 14 (1993) p. 444.CrossRefGoogle Scholar
19.Sheng, T., Felch, S.B., and Cooper, C.B., J. Vac. Sci. Technol. B 12 (1994) p. 969.CrossRefGoogle Scholar
20.Qian, X.Y., Cheung, N.W.. Lieberman, M.A., Felch, S.B., Brennan, R., and Current, M.I., Appl. Phys. Lett. 59 (1991) p. 348.CrossRefGoogle Scholar
21.Mizuno, B., Nakaoka, H., Takase, M., Hori, A., Nakayama, F., and Ogura, M., Ext. Abstr. of 1995 Int. Conf. on Solid State Dev. Mater. (Osaka, Japan, August 1995) p. 1041.Google Scholar
22.Pico, C.A., Lieberman, M.A., and Cheung, N.W., J. Electron. Materials 21 (1992) p. 75.CrossRefGoogle Scholar
23.Felch, S.B., to be published.Google Scholar
24.Mizuno, B., Nakayama, I., Takase, M., Nakaoka, H., and Kubota, M., Surf. Coat. Technol. 84 (1–2) (1996).Google Scholar
25.Bernstein, J.D., Qin, S., Chan, C., and King, T-J., IEEE Electron. Dev. Lett. 16 (1995) p. 421.CrossRefGoogle Scholar
26.Mizuno, B., Nakayama, I., Aoi, N., Kubota, M., and Komeda, T., Appl. Phys. Lett. 53 (1989) p. 2059.CrossRefGoogle Scholar
27.Yu, C. and Cheung, N.W., IEEE Electron. Dev. Lett. 15 (1994) p. 196.Google Scholar
28.Kiang, M.. Lieberman, M.A., Cheung, N.W., and Qian, X.Y., Appl. Phys Lett. 60 (1992) p. 2767.CrossRefGoogle Scholar
29.Qian, X.Y., Kiang, M.H., Cheung, N.W., Brown, I., Godehot, X., Galvin, J.E., MacGill, R.A., and Yu, K.M., Nuclear Iustrum. Methods B 55 (1991) p. 893.CrossRefGoogle Scholar
30.Qian, X.Y., Wong, H., Carl, D., Lieberman, M.A., and Cheung, N.W., ECS Proc. 90–13 (1990) p. 174.Google Scholar
31.Brown, I.G., Godechot, X., and Yu, K.M., Appl. Phys. Lett. 58 (1991) p. 1392.CrossRefGoogle Scholar
32.Sroda, T., Meassick, S., and Chan, C., Appl. Phys. Lett. 60 (1992) p. 1076.CrossRefGoogle Scholar
33.Brown, I.G., Anders, A., Anders, S., Dickinson, M.R., Ivanov, I.C., MacGill, M.A., Yao, X., and Yu, K.M., Nucl. Instrum. Methods B 80/81 (1993) p. 1281.CrossRefGoogle Scholar
34.Anders, A., Anders, S., Brown, I.G., Dickinson, M.R., and MacGill, R.A., J. Vac. Sci. Tech. B 12 (1994) p. 815.CrossRefGoogle Scholar
35.Anders, A., Anders, S., Brown, I.G., and Yu, K.M., 9th Int. Conf. Ion Beam Mod. Mat. (Canberra, Australia, February 5–10, 1995).Google Scholar
36.Lafferty, J.M., ed., Vacuum Arcs—Theory and Application (John Wiley & Sons, New York, 1980).Google Scholar
37.Boxman, R.L., Martin, P., and Sanders, D., eds., Vacuum Arc Science and Technology (Noyes, New York, 1995).Google Scholar
38.Adler, R.J. and Picraux, S.T., Nucl. Instrum. Methods B 6 (1985) p. 123.CrossRefGoogle Scholar
39.Anders, A., Anders, S., and Brown, I.G., Plasma Sources Sci. Technol. 4 (1995) p. 1.CrossRefGoogle Scholar
40.MacGill, R.A., Anders, S., Anders, A., Castro, R.A, Dickinson, M.R., Yu, K.M., and Brown, I.G., Surf. Coat. Technol. 78 (1996) p. 168.CrossRefGoogle Scholar
41.Chae, M.S., Maple, M.B., Simnad, M.T., Anders, S., Anders, A., and Brown, I.G., IEEE Trans. Appl. Supercon. 5 (1995) p. 2011.CrossRefGoogle Scholar
42.Hou, P.Y., Alexander, K.B., Wang, Z., and Brown, I.G., presented at TMS Annual Meeting, Symposium on High Temperature Coatings, Anaheim, CA, Feb. 4–8, 1996.Google Scholar
43.Anders, S., Anders, A., Bhatia, C.S., Raoux, S., Schneider, D., Ager, J.W. III, and Brown, I.G., in Proc. 3rd Int. Conf. Applications Diamond Films Related Mater., Gaithersburg, MD, Aug. 21–24, 1995 (NIST special pub. 885, Washington, DC, 1995) p. 809.Google Scholar
44.Anders, S., Anders, A., Brown, I.G., Wei, B.Komvopoulos, K., Ager, J.W. III, and Yu, K.M., Surf. Coat. Technol. 68/69 (1994) p. 383.CrossRefGoogle Scholar
45.Anders, S., Pharr, G.M., Tsui, T.Y., Callahan, D.L., and Bhatia, C.S. (unpublished manuscript).Google Scholar
46.Wood, B.P., Henins, I., Gribble, R.J., Reass, W.A., Faehl, R.J., Nastasi, M.A., and Rej, D.J., J. Vac. Sci. Technol. B 12 (1994) p. 870.CrossRefGoogle Scholar
47.Faehl, R., De Voider, B., and Wood, B., J. Vac. Sci. Technol. B12 (1994) p. 884.CrossRefGoogle Scholar
48.Hong, M. and Emmert, G.A., J. Vac. Sci. Technol. B12 (1994) p. 889.CrossRefGoogle Scholar
49.Rej, D.J., Wood, B.P., Gaehl, R.J., and Fleischmann, H.H., J. Vac. Sci. Technol. B12 (1994) p. 861.CrossRefGoogle Scholar
50.Rej, D.J. and Alexander, R.B., J. Vac. Sci. Technol. B12 (1994) p. 2380.CrossRefGoogle Scholar