Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T00:17:19.226Z Has data issue: false hasContentIssue false

Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Piezoresponse force microscopy (PFM) is a powerful method widely used for nanoscale studies of the electromechanical coupling effect in various materials systems. Here, we review recent progress in this field that demonstrates great potential of PFM for the investigation of static and dynamic properties of ferroelectric domains, nanofabrication and lithography, local functional control, and structural imaging in a variety of inorganic and organic materials, including piezoelectrics, semiconductors, polymers, biomolecules, and biological systems. Future pathways for PFM application in high-density data storage, nanofabrication, and spectroscopy are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alexe, M., Gruverman, A., Eds., Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach (Springer, New York, 2004).Google Scholar
2Grigoriev, A., Do, D.H., Kim, D.M., Eom, C.B., Adams, B., Dufresne, E.M., Evans, P.G., Phys. Rev. Lett. 96, 187601 (2006).CrossRefGoogle Scholar
3Nattermann, T., Shapir, Y., Vilfan, I., Phys. Rev. B 42, 8577 (1990).CrossRefGoogle Scholar
4Agronin, A., Molotskii, M., Rosenwaks, Y., Rosenman, G., Rodriguez, B.J., Kingon, A.I., Gruverman, A., J. Appl. Phys. 99, 104102 (2006).CrossRefGoogle Scholar
5Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.-M., Phys. Rev. Lett. 89, 097601 (2002).CrossRefGoogle Scholar
6Pertsev, N.A., Petraru, A., Kohlstedt, H., Waser, R., Bdikin, I.K., Kiselev, D.A., Kholkin, A.L., Nanotechnology 19, 375703 (2008).CrossRefGoogle Scholar
7Paruch, P., Giamarchi, T., Triscone, J.-M., Phys. Rev. Lett. 94, 197601 (2005).CrossRefGoogle Scholar
8Catalan, G., Béa, H., Fusil, S., Bibes, M., Paruch, P., Barthélémy, A., Scott, J.F., Phys. Rev. Lett. 100, 027602 (2008).CrossRefGoogle Scholar
9Likodimos, V., Labardi, M., Orlik, X.K., Pardi, L., Allegrini, M., Emonin, S., Marti, O., Phys. Rev. B 63, 064104 (2001).CrossRefGoogle Scholar
10Likodimos, V., Labardi, M., Allegrini, M., Phys. Rev. B 66, 024104 (2002).CrossRefGoogle Scholar
11Shvartsman, V.V., Kholkin, A.L., J. Appl. Phys. 101, 064108 (2007).CrossRefGoogle Scholar
12Kim, D.J., Jo, J.Y., Kim, T.H., Yang, S.M., Chen, B., Kim, Y.S., Noh, T.W., Appl. Phys. Lett. 91, 132903 (2007).CrossRefGoogle Scholar
13Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., Cross, J.S., Appl. Phys. Lett. 87, 082902 (2005).CrossRefGoogle Scholar
14Gruverman, A., Wu, D., Scott, J.F., Phys. Rev. Lett. 100, 097601 (2008).CrossRefGoogle Scholar
15Jo, J.Y., Han, H.S., Yoon, J.-G., Song, T.K., Kim, S.-H., Noh, T.W., Phys. Rev. Lett. 99, 267602 (2007).CrossRefGoogle Scholar
16Gruverman, A., Wu, D., Fan, H.-J., Vrejoiu, I., Alexe, M., Harrison, R.J., Scott, J.F., J. Phys.: Condens. Matter 20, 342201 (2008).Google Scholar
17Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., Alexe, M., Nano Lett. 9, 1127 (2009).CrossRefGoogle Scholar
18Dawber, M., Gruverman, A., Scott, J.F., J. Physics: Condens. Matter 18, L71 (2006).Google Scholar
19Smolenskii, G.A., Isupov, V.A., Dokl. Akad. Nauk SSSR 9, 653 (1954).Google Scholar
20Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
21Park, S.-E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1987).CrossRefGoogle Scholar
22Haertling, H.H., Ferroelectrics 75, 25 (1987).CrossRefGoogle Scholar
23Vakhrushev, S.B., Kvyatkovksy, O.E., Naberezhnov, A.A., Okuneva, N.M., Toperverg, B., Ferroelectrics 90, 173 (1989).CrossRefGoogle Scholar
24Lehnen, P., Kleemann, W., Woike, Th., Pankrath, R., Phys. Rev. B 64, 224109 (2001).CrossRefGoogle Scholar
25Shvartsman, V.V., Kleemann, W., Lukasiewicz, T., Dec, J., Phys. Rev. B 77, 054105 (2008).CrossRefGoogle Scholar
26Kleemann, W., Dec, J., Shvartsman, V. V., Kutnjak, Z., Braun, T., Phys. Rev. Lett. 97, 065702 (2006).CrossRefGoogle Scholar
27Xu, G., Viehland, D., Li, J.-F., Gehring, P.M., Shirane, G., Phys. Rev. B 68, 212410 (2003).CrossRefGoogle Scholar
28Vakhrushev, S.B., Naberezhnov, A.A., Dkhil, B., Kiat, J.-M., Shvartsman, V., Kholkin, A., Dorner, B., Ivanov, A., AIP Conf. Proc. 677, 74 (2003).CrossRefGoogle Scholar
29Shvartsman, V. V., Kholkin, A.L., Phys. Rev. B 69, 014102 (2004).CrossRefGoogle Scholar
30Bai, F., Li, J.-F., Viehland, D., Appl. Phys. Lett. 85, 2313 (2004).CrossRefGoogle Scholar
31Bdikin, I.K., Shvartsman, V. V., Kholkin, A.L., Appl. Phys. Lett. 83, 4232 (2003).CrossRefGoogle Scholar
32Shvartsman, V. V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., Sternberg, A., Appl. Phys. Lett. 86, 202907 (2005).CrossRefGoogle Scholar
33Kiselev, D.A., Bdikin, I.K., Selezneva, E.K., Bormanis, K., Sternberg, A., Kholkin, A.L., J. Phys. D 40, 7109 (2007).CrossRefGoogle Scholar
34Shvartsman, V.V., Emelyanov, A. Yu., Kholkin, A.L., Safari, A., Appl. Phys. Lett. 81, 117 (2002);CrossRefGoogle Scholar
Shvartsman, V.V., Kholkin, A.L., Tyunina, M., Levoska, J., Appl. Phys. Lett. 86, 222907 (2005).CrossRefGoogle Scholar
35Salak, A.N., Shvartsman, V.V., Seabra, M.P., Kholkin, A.L., Ferreira, V.M., J. Phys.: Condens. Matter 16, 2785 (2004).Google Scholar
36Kalinin, S.V., Rodriguez, B.J., Jesse, S., Maksymovych, P., Seal, K., Baddorf, A.P., Kholkin, A., Proksch, R., Mater. Today 11, 16 (2008).CrossRefGoogle Scholar
37Bai, F., Li, J.-F., Viehland, D., Appl. Phys. Lett. 85, 4457 (2004).CrossRefGoogle Scholar
38Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., Eastman, L.F., J. Phys.: Condens. Matter 14, 3399 (2002).Google Scholar
39Rodriguez, B.J., Gruverman, A., Kingon, A.I., Nemanich, R.J., Appl. Phys. Lett. 80, 4166 (2002).CrossRefGoogle Scholar
40Fukada, E., Yasuda, I., J. Phys. Soc. Jpn. 12, 1158 (1957).CrossRefGoogle Scholar
41Lang, S.B., Nature 5063, 704 (1966).CrossRefGoogle Scholar
42Fukada, E., J. Phys. Soc. Jpn. 10, 149 (1955).CrossRefGoogle Scholar
43Fukada, E., Biorheology 32, 593 (1995).Google Scholar
44Li, D.B., Bonnell, D.A., Annu. Rev. Mater. Res. 38, 351 (2008).CrossRefGoogle Scholar
45Hidaka, T., Maruyama, T., Sakai, I., Saitoh, M., Wills, L.A., Hiskes, R., Dicarolis, S.A., Amano, J., Integr. Ferroelectr. 17, 319 (1997).CrossRefGoogle Scholar
46Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K., Kitamura, K., Appl. Phys. Lett. 81, 4401 (2002).CrossRefGoogle Scholar
47Terabe, K., Takekawa, S., Nakamura, M., Kitamura, K., Higuchi, S., Gotoh, Y., Gruverman, A., Appl. Phys. Lett. 81, 2044 (2002).CrossRefGoogle Scholar
48Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., Molotski, M., Appl. Phys. Lett. 82, 103 (2003).CrossRefGoogle Scholar
49Park, H., Jung, J., Min, D.-K., Kim, S., Hong, S., Shin, H., Appl. Phys. Lett. 84, 1734 (2004).CrossRefGoogle Scholar
50Kalinin, S.V., Gruverman, A., Eds., Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, New York, 2006).Google Scholar
51Cho, Y., Ohara, K., Appl. Phys. Lett. 79, 3842 (2001).CrossRefGoogle Scholar
52Hamman, H.F., Martin, Y.C., Wickramasinghe, H.K., Appl. Phys. Lett. 84, 810 (2004).CrossRefGoogle Scholar
53Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K., Hiranaga, Y., Nanotechnology 17, S137 (2006).CrossRefGoogle Scholar
54Li, D.B., Bonnell, D.A., Ceram. Int. 34, 157 (2008).CrossRefGoogle Scholar
55Li, D.B., Zhao, M.H., Garra, J., Nat. Mater. 7, 473 (2008).CrossRefGoogle Scholar
56Zhao, M.H., Bonnell, D.A., Vohs, J.M., Surf. Sci. 602, 2849 (2008).CrossRefGoogle Scholar
57Yun, Y., Altman, E.I., J. Am. Chem. Soc. 129, 15684 (2007).CrossRefGoogle Scholar
58Shao, R., Nikiforov, M.P., Bonnell, D.A., Appl. Phys. Lett. 89, 112904 (2006).CrossRefGoogle Scholar
59Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, J.H., Nano Lett. 2, 589 (2002).CrossRefGoogle Scholar
60Li, D.B., Strachan, D.R., Ferris, J.H., Bonnell, D.A., J. Mater. Res. 21, 935 (2006).CrossRefGoogle Scholar
61Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, Z.H., Zhang, Q., Dunn, S., Nano Lett. 2, 589 (2002).CrossRefGoogle Scholar
62Rankin, C., Chou, C., Conklin, D., Bonnell, D., ACS Nano 1, 234 (2007).CrossRefGoogle Scholar
63Gruverman, A., Appl. Phys. Lett. 75, 1452 (1999).CrossRefGoogle Scholar
64Harnagea, C., Alexe, M., Schilling, J., Choi, J., Wehrspohn, R.B., Hesse, D., Gösele, U., Appl. Phys. Lett. 83, 1827 (2003).CrossRefGoogle Scholar
65Hu, Z., Tian, M., Nysten, B., Jonas, A.M., Nat. Mater. 8, 62 (2009).CrossRefGoogle Scholar
66Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Ramana Murty, M.V., Auciello, O., Bai, G.R., Stephenson, G.B., Phys. Rev. Lett. 89, 67601 (2002).CrossRefGoogle Scholar
67Quate, C.F., Surf. Sci. 386, 259 (1997).CrossRefGoogle Scholar
68Vettiger, P., Brugger, J., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M., Rothuizen, H., Stutz, R., Widmer, R., Binnig, G., Microelectron. Eng. 46, 11 (1999).CrossRefGoogle Scholar
69Rosenwaks, Y., Dahan, D., Molotskii, M., Rosenman, G., Appl. Phys. Lett. 86, 012909 (2005).CrossRefGoogle Scholar
70Humphris, A.D.L., Miles, M.J., Hobbs, J.K., Appl. Phys. Lett. 86, 034106 (2005).CrossRefGoogle Scholar
71Molotskii, M., Winebrand, E., Phys. Rev. B 71, 132103 (2005).CrossRefGoogle Scholar
72Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., Appl. Phys. Lett. 89, 192901 (2006).CrossRefGoogle Scholar
73Le Rhun, G., Vrejoiu, I., Alexe, M., Appl. Phys. Lett. 90, 012908 (2007).CrossRefGoogle Scholar
74Le Rhun, G., Vrejoiu, I., Pintilie, L., Hesse, D., Alexe, M., Gösele, U., Nanotechnology 17, 3154 (2006).CrossRefGoogle Scholar
75Bdikin, I.K., Kholkin, A.L., Morozovska, A.N., Svechnikov, S.V., Kim, S.-H., Kalinin, S.V., Appl. Phys. Lett. 92, 182909 (2008).CrossRefGoogle Scholar
76Jesse, S., Baddorf, A.P., Kalinin, S.V., Appl. Phys. Lett. 88, 062908 (2006).CrossRefGoogle Scholar
77Jesse, S., Lee, H.-N., Kalinin, S.V., Rev. Sci. Instrum. 77, 073702 (2006).CrossRefGoogle Scholar
78Kalinin, S.V., Rodriguez, B.J., Jesse, S., Chu, Y.H., Zhao, T., Ramesh, R., Choudhury, S., Chen, L.Q., Eliseev, E.A., Morozovska, A.N., Proc. Nat. Acad. Sci. U.S.A. 104, 20204 (2007).CrossRefGoogle Scholar
79Rodriguez, B.J., Jesse, S., Alexe, M., Kalinin, S.V., Adv. Mater. 20, 109 (2008).CrossRefGoogle Scholar
80Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.-Q., Kalinin, S.V., Nat. Mater. 7, 209 (2008).CrossRefGoogle Scholar
81Vrejoiu, I., Philos. Mag. 86, 4477 (2006).CrossRefGoogle Scholar
82Kalinin, S.V., Jesse, S., Rodriguez, B.J., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Phys. Rev. Lett. 100, 155703 (2008).CrossRefGoogle Scholar
83Li, Y.L., Hu, S.Y., Chen, L.Q., J. Appl. Phys. 97, 034112 (2005).CrossRefGoogle Scholar
84Brukman, M.J., Bonnell, D.A., Phys. Today 61, 36 (2008).CrossRefGoogle Scholar
85Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., Gruverman, A., Ultramicroscopy 106, 334 (2006).CrossRefGoogle Scholar