Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T01:05:16.480Z Has data issue: false hasContentIssue false

Piezophotonics: From fundamentals and materials to applications

Published online by Cambridge University Press:  10 December 2018

Jianhua Hao
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong; [email protected]
Chao-Nan Xu
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan; [email protected]
Get access

Abstract

The piezophotonic effect is the coupling between piezoelectric properties and photoexcitation, where strain-induced piezopotential modulates and controls the relevant optical process. Specifically, metal ions as activators are capable of responding to photoexcitation and subsequent emission of light, also called mechanoluminescence, in general, and piezoluminescence specifically for piezoelectrics. These phenomena are helpful for understanding the materials fundamentals and conceiving widespread device applications. In this article, we briefly introduce the physical mechanisms of piezophotonics, including piezoluminescence. Selected host materials and metal-ion activators are described for demonstrating the piezophotonic effect. We provide a unified profile and recent prototypical demonstrations of light emission triggered by mechanical stimuli. The devices based on these materials offer the advantages of remote detection, nondestructive analysis, and repeatability, hence they are promising candidates for applications in stress sensing, structural health diagnosis, three-dimensional handwriting, magnetic-optical sensing, energy harvesting, biomedicine, novel light sources, and displays.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, C.N., Watanabe, T., Akiyama, M., Zheng, X.G., Appl. Phys. Lett. 74, 1236 (1999).CrossRefGoogle Scholar
Xu, C.N., Watanabe, T., Akiyama, M., Zheng, X.G., Appl. Phys. Lett. 74, 2414 (1999).CrossRefGoogle Scholar
Xu, C.N., “Coatings,” in Encyclopedia of Smart Materials, Schwartz, M., Ed. (Wiley, New York, 2002), pp. 190201.Google Scholar
Wang, Z.L., Nano Today, 5, 540 (2010).CrossRefGoogle Scholar
Wang, Z.L., Piezotronics and Piezo-Phototronics (Springer, Berlin, 2013).Google Scholar
Bai, G., Tsang, M.-K., Hao, J., Adv. Funct. Mater. 26, 6330 (2016).CrossRefGoogle Scholar
Bai, G., Tsang, M.-K., Hao, J., Adv. Opt. Mater. 3, 431 (2015).CrossRefGoogle Scholar
Matsui, H., Xu, C.N., Liu, Y., Tateyama, H., Phys. Rev. B Condens. Matter 69, 235109 (2004).CrossRefGoogle Scholar
Botterman, J., Eeckhout, K.V., Baere, I.D., Poelman, D., Smet, P.F., Acta Mater. 60, 5494 (2012).CrossRefGoogle Scholar
Wang, X.S., Xu, C.N., Yamada, H., Nishikubo, K., Zheng, X.G., Adv. Mater. 17, 1254 (2005).CrossRefGoogle Scholar
Tu, D., Xu, C.N., Yoshida, A., Fujihala, M., Hirotsu, J., Zheng, X.G., Adv. Mater. 29, 1606914 (2017).CrossRefGoogle Scholar
Zhang, J.C., Xu, C.N., Kamimura, S., Terasawa, Y., Yamada, H., Wang, X., Opt. Express 21, 12976 (2013).CrossRefGoogle Scholar
Li, J., Xu, C.N., Tu, D., Chai, X., Wang, X., Liu, L., Kawasaki, E., Acta Mater. 145, 462 (2018).CrossRefGoogle Scholar
Wong, M.-C., Chen, L., Tsang, M.-K., Zhang, Y., Hao, J., Adv. Mater. 27, 4488 (2015).CrossRefGoogle Scholar
Kamimura, S., Yamada, H., Xu, C.N., Appl. Phys. Lett. 101, 091113 (2012).CrossRefGoogle Scholar
Zhang, H., Yamada, H., Terasaki, N., Xu, C.N., Appl. Phys. Lett. 91, 0819051 (2007).Google Scholar
Liu, Y., Xu, C.N., Appl. Phys. Lett. 84, 5016 (2004).CrossRefGoogle Scholar
Zhang, Y., Gao, G., Chan, H.L.W., Dai, J., Wang, Y., Hao, J., Adv. Mater. 24 , 1729 (2012).CrossRefGoogle Scholar
Tu, D., Xu, C.N., Fujio, Y., Yoshida, A., Light Sci. Appl. 4, e356 (2015).CrossRefGoogle Scholar
Jeong, S.M., Song, S., Joo, K.-I., Kim, J., Hwang, S.-H., Jeong, J., Kim, H., Energy Environ. Sci. 7, 3338 (2014).CrossRefGoogle Scholar
Wang, X., Zhang, H., Yu, R., Dong, L., Peng, D., Zhang, A., Zhang, Y., Liu, H., Pan, C., Wang, Z.L., Adv. Mater. 27, 2324 (2015).CrossRefGoogle Scholar
Zhang, Y., Jie, W., Chen, P., Liu, W., Hao, J., Adv. Mater. 30, 1707007 (2018).CrossRefGoogle Scholar
Fang, H., Wang, X., Li, Q., Peng, D., Yan, Q., Pan, C., Adv. Energy Mater. 6, 1600829 (2016).CrossRefGoogle Scholar
Chen, L., Wong, M.-C., Bai, G., Jie, W., Hao, J., Nano Energy 14, 372 (2015).CrossRefGoogle Scholar
Chen, Y., Zhang, Y., Karnaushenko, D., Chen, L., Hao, J., Ding, F., Schmidt, O.G., Adv. Mater. 29, 1605165 (2017).CrossRefGoogle Scholar
Wang, X., Ling, R., Zhang, Y., Que, M., Peng, Y., Pan, C., Nano Res. 11, 1967 (2018).CrossRefGoogle Scholar
Peng, D., Chen, B., Wang, F., ChemPlusChem 80, 1209 (2015).CrossRefGoogle Scholar
Terasaki, N., Zhang, H.W., Yamada, H., Xu, C.N., Chem. Commun. 47, 8034 (2011).CrossRefGoogle Scholar
Terasaki, N., Yamada, H., Xu, C.N., Catal. Today 201, 203 (2013).CrossRefGoogle Scholar
Graydon, O., Nat. Photonics 9, 558 (2015).CrossRefGoogle Scholar
Wong, M.-C., Chen, L., Bai, G., Huang, L.-B., Hao, J., Adv. Mater. 29, 1701945 (2017).CrossRefGoogle Scholar
Bai, G., Yuan, S., Zhao, Y., Yang, Z., Choi, S.Y., Chai, Y., Yu, S.F., Lau, S.P., Hao, J., Adv. Mater. 28, 7472 (2016).CrossRefGoogle Scholar
Huang, B., Sun, M., Peng, D., Nano Energy 47, 150 (2018).CrossRefGoogle Scholar
Yang, Z., Jie, W., Mak, C.-H., Lin, S., Lin, H., Yang, X., Yan, F., Lau, S.P., Hao, J., ACS Nano 11, 4225 (2017).CrossRefGoogle Scholar
Jie, W., Yang, Z., Bai, G., Hao, J., Adv. Opt. Mater. 6, 1701296 (2018).CrossRefGoogle Scholar
Wu, W., Wang, L., Yu, R., Liu, Y., Wei, S., Hone, J., Wang, Z.L., Adv. Mater. 28, 8463 (2016).CrossRefGoogle Scholar
Wu, W., Wang, Z.L., Nat. Rev. Mater. 1, 16031 (2016).CrossRefGoogle Scholar
Tu, D., Hamabe, R., Xu, C.N., J. Phys. Chem. C 122, 23307 (2018).CrossRefGoogle Scholar
Liu, L., Xu, C.N., Yoshida, A., Tu, D., Ueno, N., Kainuma, S., Adv. Mater. Technol. 1800336 (2018), https://doi.org/10.1002/admt.201800336.CrossRefGoogle Scholar