Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:48:40.217Z Has data issue: false hasContentIssue false

Patterned Magnetic Media Made by Self-Assembled Block-Copolymer Lithography

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Patterned magnetic recording media, in which data bits are stored in discrete single-domain magnetic particles, have been proposed for the next generation of recording media. To achieve high densities, features with periodicities on the order of 25 nm and below are required over large areas, which is a challenging task for any lithography process. Block copolymers (BCPs), which phase-separate into ordered periodic nanoscale structures, might provide a path to accomplish such patterning. In this article, we describe BCP lithography and show how the self-assembled patterns can be templated to make large-area arrays of nanoscale structures with long-range order.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Terris, B.D., Thomson, T., J. Phys. D 38, R199 (2005).CrossRefGoogle Scholar
2.Ross, C.A., Annu. Rev. Mater. Sci. 31, 203 (2001).CrossRefGoogle Scholar
3.Richter, H.J., J. Phys. D 40, R149 (2007).CrossRefGoogle Scholar
4.Krausch, G., Magerle, R., Adv. Mater. 14, 1579 (2002).3.0.CO;2-6>CrossRefGoogle Scholar
5.Park, C., Yoon, J., Thomas, E.L., Polymer 44, 6725 (2003).CrossRefGoogle Scholar
6.Hamley, I.W., Nanotechnology 14, R39 (2003).CrossRefGoogle Scholar
7.Segalman, R.A., Mater. Sci. Eng. Rep. 48, 191 (2005).CrossRefGoogle Scholar
8.Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I., Adv. Mater. 18, 2505 (2006).CrossRefGoogle Scholar
9.Darling, S.B., Prog. Polym. Sci. 32, 1152 (2007).CrossRefGoogle Scholar
10.Black, C.T., Ruiz, R., Breyta, G., Cheng, J.Y., Colburn, M.E., Guarini, K.W., Kim, H.-C., Zhang, Y., IBM J. Res. Dev. 51, 605 (2007).CrossRefGoogle Scholar
11.Ross, C.A., Microlithogr. World 16, 4 (2007).Google Scholar
12.Mansky, P., Huang, E., Liu, Y., Russell, T.P., Hawker, C., Science 275, 1458 (1997).CrossRefGoogle Scholar
13.Ni, Y., Rulkens, R., Manners, I., J. Am. Chem. Soc. 118, 4102 (1996).CrossRefGoogle Scholar
14.Jung, Y.S., Ross, C.A., Nano Lett. 7, 2046 (2007).CrossRefGoogle Scholar
15.Bates, F.S., Fredrickson, G.H., Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
16.Russell, T.P., Hjelm, R.P., Seeger, P.A., Macromolecules 23, 890 (1990).CrossRefGoogle Scholar
17.Hammond, M.R., Cochran, E., Fredrickson, G.H., Kramer, E.J., Macromolecules 38, 6575 (2005).CrossRefGoogle Scholar
18.Eitouni, H.B., Balsara, N.P., Hahn, H., Pople, J.A., Hempenius, M.A., Macromolecules 35, 7765 (2002).CrossRefGoogle Scholar
19.Nose, T., Polymer 36, 2243 (1995).CrossRefGoogle Scholar
20.Segalman, R.A., Yokoyama, H., Kramer, E.J., Adv. Mater. 13, 1152 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
21.Naito, K., Hieda, H., Sakurai, M., Kamata, Y., Asakawa, K., IEEE Trans. Magn. 38, 1949 (2002).CrossRefGoogle Scholar
22.Cheng, J.Y., Mayes, A.M., Ross, C.A., Nat. Mater. 3, 823 (2004).CrossRefGoogle Scholar
23.Black, C.T., Bezencenet, O., IEEE Trans. Nanotechnol. 3, 412 (2004).CrossRefGoogle Scholar
24.Sundrani, D., Darling, S.B., Sibener, S.J., Nano Lett. 4, 273 (2004).CrossRefGoogle Scholar
25.Xiao, S., Yang, X., Edward, E.W., La, Y., Nealey, P.F., Nanotechnology 16, S324 (2005).CrossRefGoogle Scholar
26.Ruiz, R., Sandstrom, R.L., Black, C.T., Adv. Mater. 19, 587 (2007).CrossRefGoogle Scholar
27.Cheng, J.Y., Zhang, F.L., Smith, H.I., Vancso, G.J., Ross, C.A., Adv. Mater. 18, 597 (2006).CrossRefGoogle Scholar
28.Cheng, J.Y., Zhang, F., Mayes, A.M., Ross, C.A., Nano Lett. 6, 2099 (2006).CrossRefGoogle Scholar
29.Bita, I., Yang, J.K.W., Jung, Y.S., Ross, C.A., Thomas, E.L., Berggren, K.K., Science, 321, 939 (2008).CrossRefGoogle Scholar
30.Rockford, L., Liu, Y., Mansky, P., Russell, T.P., Yoon, M., Mochrie, S.G.J., Phys. Rev. Lett. 82, 2602 (1999).CrossRefGoogle Scholar
31.Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J., Nealey, P. F., Nature 424, 411 (2003).CrossRefGoogle Scholar
32.Edwards, E.W., Montague, M.F., Solak, H.H., Hawker, C.J., Nealey, P.F., Adv. Mater. 16, 1315 (2004).CrossRefGoogle Scholar
33.Stoykovich, M.P., Muller, M., Kim, S.O., Solak, H.H., Edwards, E.W., de Pablo, J.J., Nealey, P.F., Science 308, 1442 (2005).CrossRefGoogle Scholar
34.Edwards, E.W., Muller, M., Stoykovich, M.P., Solak, H.H., de Pablo, J.J., Nealey, P.F., Macromolecules 40, 90 (2007).CrossRefGoogle Scholar
35.Ruiz, R., Kang, H., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., de Pablo, J.J., Nealey, P.F., Science, 321, 936 (2008).CrossRefGoogle Scholar
36.Cheng, J.Y., Rettner, C. T., Sanders, D.P., Kim, H.C., Hinsberg, W.D., Adv. Mater., 20, 3155 (2008).CrossRefGoogle Scholar
37.Cheng, J.Y., Ross, C.A., Chan, V.Z.H., Thomas, E.L., Lammertink, R.G.H., Vancso, G.J., Adv. Mater. 13, 1174 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
38.Walsh, M.E., Hao, Y., Ross, C.A., Smith, H.I., J. Vac. Sci. Technol. B 18, 3539 (2000).CrossRefGoogle Scholar
39.Cheng, J.Y., Jung, W., Ross, C.A., Phys. Rev. B 70, 064417 (2004).CrossRefGoogle Scholar
40.Asakawa, K., Hiraoka, T., Jpn. J. Appl. Phys. 41, 6112 (2002).CrossRefGoogle Scholar
41.Kamata, Y., Kikitsu, A., Hieda, H., Sakurai, M., Naito, K., J. Appl. Phys. 95, 6705 (2004).CrossRefGoogle Scholar
42.Hieda, H., Yanagita, Y., Kikitsu, A., Maeda, T., Naito, K., J. Photopolym. Sci. Technol. 19, 425 (2006).CrossRefGoogle Scholar
43.Kamata, Y., Kikitsu, A., Hieda, H., Sakurai, M., Naito, K., Bai, J.M., Ishio, S., Jpn. J. Appl. Phys. 46, 999 (2007).CrossRefGoogle Scholar
44.Xiao, S., Yang, X., Edward, E.W., La, Y., Nealey, P.F., Nanotechnology 16, S324 (2005).CrossRefGoogle Scholar
45.Kubo, T., Parker, J.S., Hillmyer, M.A., Leighton, C., Appl. Phys. Lett. 90, 233113 (2007).CrossRefGoogle Scholar
46.Black, C.T., Guarini, K.W., Sandstrom, R.L., Yeung, S., Zhang, Y., Proc. Mater. Res. Soc. 728, S4.9 (2002).CrossRefGoogle Scholar
47.Bal, M., Ursache, A., Tuominen, M.T., Goldbach, J.T., Russell, T.P., Appl. Phys. Lett. 81, 3479 (2002).CrossRefGoogle Scholar
48.Abes, J.I., Cohen, R.E., Ross, C.A., Chem. Mater. 15, 1125 (2003).CrossRefGoogle Scholar
49.Hashimoto, T., Tsutsumi, K., Funaki, Y., Langmuir 13, 6869 (1997).CrossRefGoogle Scholar
50.Darling, S.B., Yufa, N.A., Cisse, A.L., Bader, S.D., Sibener, S.J., Adv. Mater. 17, 2446 (2005).CrossRefGoogle Scholar
51.Ilievski, F., Ross, C.A., Vancso, G.J., J. Appl. Phys. 103, 07C520 (2008).CrossRefGoogle Scholar
52.Guarini, K.W., Black, C.T., Yeuing, S.H.I., Adv. Mater. 14, 1290 (2002).3.0.CO;2-N>CrossRefGoogle Scholar
53.Xiao, S., Yang, X., J. Vac. Sci. Technol. B 25, 1953 (2007).CrossRefGoogle Scholar
54.Hammond, M.R., Sides, S.W., Fredrickson, G.H., Kramer, E.J., Ruokolainen, J., Hahn, S.F., Macromolecules 36, 8712 (2003).CrossRefGoogle Scholar