Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:30:28.818Z Has data issue: false hasContentIssue false

Particle-Packing Phenomena and Their Application in Materials Processing

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Particle packing is directly controlled by the particle-size distribution of a material being processed. For this reason, particle packing is important to all particulate/fluid systems. After the solids fraction of a body is defined, interparticle chemistry controls how the body will pack and flow. A system of powders can never pack better than the maximum possible level defined by the particle-size distribution alone. Proper control of interparticle chemistry however can help achieve maximum packing, can be used to open the structure, and/or can be used to modify rheological or other process properties.

The main goals of particle-packing research have been to determine how systems of particles pack, to develop algorithms for calculating packing densities and porosities for any distribution of particles (spherical or nonspherical, rough or smooth, wet or dry), and to determine how packing and its properties affect the variety of industrial operations that utilize particulate/fluid systems.

Type
Compaction Science and Technology
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Furnas, C.C., U.S. Bureau of Mines Reports of Investigations No. 2894 (1928).Google Scholar
2.Furnas, C.C., Ind. Eng. Chem. 23 (1931) p. 1052.CrossRefGoogle Scholar
3.Andreasen, A.H.M., Kolloid Z. 48 (1929) p. 175.CrossRefGoogle Scholar
4.Andreasen, A.H.M., Kolloidchemische Beihefte 27 (1928) p. 349.CrossRefGoogle Scholar
5.Andreasen, A.H.M., Kolloid Z. 50 (1930) p. 217.CrossRefGoogle Scholar
6.Ayer, J.E. and Soppett, F.E., J. Am. Ceram. Soc. 48 (1965) p. 180.CrossRefGoogle Scholar
7.German, R.M., Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, NJ, 1989).Google Scholar
8.McGeary, R.K., J. Am. Ceram. Soc. 44 (1961) p. 513.CrossRefGoogle Scholar
9.Scott, G.D., Nature 188 (1960) p. 908.CrossRefGoogle Scholar
10.Mandelbrot, B.B., The Fractal Geometry of Nature (W.H. Freeman and Company, New York, 1983).CrossRefGoogle Scholar
11.Herdan, G., Small Particle Statistics (Butterworth, London, 1953).Google Scholar
12.German, R.M., Powder Injection Molding (Metals Powder Industries Federation, Princeton, NJ, 1990).Google Scholar
13.Patankar, A.N. and Mandal, G., Trans. Indian Ceram. Soc. 39 (1980) p. 109.CrossRefGoogle Scholar
14.Dinger, D.R. and Funk, J.E., presented at Fine Particle Society Meeting, Chicago, IL, April 12, 1982.Google Scholar
15.Funk, J.E. and Dinger, D.R., Predictive Process Control of Crowded Particulate Suspensions Applied to Ceramic Manufacturing (Kluwer Academic Publishers, Boston, 1994).CrossRefGoogle Scholar
16.Funk, J.E. and Dinger, D.R., Interceram. 41 (1992) p. 10.Google Scholar
17.Dinger, D.R. and Funk, J.E., Interceram. 41 (1992) pp. 95, 176.Google Scholar
18.Dinger, D.R. and Funk, J.E., Interceram. 41 (1992) p. 332.Google Scholar
19.Dinger, D.R. and Funk, J.E., Interceram. 41 42 (1993) p. 150.Google Scholar
20.Dinger, D.R. and Funk, J.E., Interceram. 43 (1994) pp. 87, 150.Google Scholar
21.Funk, J.E. and Dinger, D.R., Interceram. 43 (1994) p. 350.Google Scholar
22.German, R.M., Rev. Powder Metall. Phys. Ceram. 5 (1992) p. 81.Google Scholar
23.Cumberland, D.J. and Crawford, R.J., The Packing of Particles (Elsevier Science Publishers B.V., Amsterdam, 1987).Google Scholar
24.Frost, H.J., Acta Metall. 30 (1982) p. 889.CrossRefGoogle Scholar
25.Frost, H.J. and Raj, R., J. Am. Ceram. Soc. 65 (1982) p. C19.CrossRefGoogle Scholar
26.Bordia, R.K., Scripta Metall. 18 (1984) p. 725.CrossRefGoogle Scholar
27.Nair, S.V., Hendrix, B.C., and Tien, J.K., Acta Metall. 34 (1986) p. 1599.CrossRefGoogle Scholar
28.Jullien, R., Jund, P., Caprion, D., and Quitmann, D., Phys. Rev. E in press.Google Scholar
29.Wildemuth, C.R. and Williams, M.C., Rheol. Acta 23 (1984) p. 627.CrossRefGoogle Scholar
30.Trent, B.C., in Key Questions in Rock Mechanics: Proc. 29th U.S. Symp., edited by Cundall, P.A., Sterling, R.L., and Starfield, A.M. (University of Minnesota, A.A. Balkema Publishers, Rotterdam, 1988) p. 395.Google Scholar
31.Hamada, Y., Ishizaki, K., and Briceno, J., J. Ceram. Soc. Jpn. 98 (1990) p. 343.CrossRefGoogle Scholar
32.Jiang, M., Wang, S., and Jin, X., J. Mater. Sci. Lett. 9 (1990) p. 1272.CrossRefGoogle Scholar
33.Hoy, K.L. and Peterson, R.H., J. Coatings Technol. 64 (1992) p. 59.Google Scholar
34.Lu, G.Q. and Shi, X., J. Mater. Sci. 13 (1994) p. 1709.Google Scholar
35.Cesarano, J., McEuen, M.J., and Swiler, T., in Diversity Into the Next Century Conf, Int. SAMPE Tech. Conf. Ser., No. 27, edited by Martinez, R.J., Arris, H., Emerson, J.E., and Pike, G. (Society for the Advancement of Materials and Process Engineering [SAMPE], Covina, CA, 1995) p. 658.Google Scholar
36.Burk, R.C. and Apté, P.S., Am. Ceram. Soc. Bull. 66 (1987) p. 1389.Google Scholar
37.Davis, I.L. and Carter, R.G., J. Appl. Phys. 67 (1990) p. 1022.CrossRefGoogle Scholar
38.Kwong, K.S., PhD dissertation, Clemson University, 1991.Google Scholar
39.Gauthier, F.G.R. and Danforth, S.C., J. Mater. Sci. 26 (1991) p. 6035.CrossRefGoogle Scholar
40.Lam, D.C.C. and Nakagawa, M., J. Ceram. Soc. Jpn. 102 (1994) p. 133.CrossRefGoogle Scholar
41.Standish, N. and Yu, A.B., Powder Technol. 49 (1987) p. 249.CrossRefGoogle Scholar
42.Yu, A., Zou, R., and Standish, N., J. Am. Ceram. Soc. 75 (1992) p. 2765.CrossRefGoogle Scholar
43.Markhoff, C.J., Mutsuddy, B.C., and Lennon, J.W., in Advances in Ceramics: Forming of Ceramics, vol. 9, edited by Mangels, J. and Messing, G.L. (American Ceramic Society, Columbus, OH, 1984) p. 246.Google Scholar
44.Yu, A.B. and Standish, N., Powder Technol. 55 (1988) p. 171.CrossRefGoogle Scholar
45.Yu, A.B. and Standish, N., Ind. Eng. Chem. Res. 30 (1991) p. 1372.CrossRefGoogle Scholar
46.Zheng, J., Johnson, P.F., and Reed, J.S., J. Am. Ceram. Soc. 73 (1990) p. 1392.CrossRefGoogle Scholar
47.Westman, A.E.R. and Hugill, H.R., J. Am. Ceram. Soc. 13 (1930) p. 767.CrossRefGoogle Scholar
48.Van Groenou, A.B. and Lissenburg, R.C.D., J. Am. Ceram. Soc. 66 (1983) p. C156.CrossRefGoogle Scholar
49.Burk, R.C., Zawidzki, T.W., and Apte, P.S., J. Am. Ceram. Soc. 66 (1983) p. 815.CrossRefGoogle Scholar
50.Yan, M.F., Cannon, R.M., Bowen, H.K., and Chowdhry, U., Mater. Sci. Eng. 60 (1983) p. 275.CrossRefGoogle Scholar
51.Liniger, E. and Raj, R., J. Am. Ceram. Soc. 13 (1987) p. 843.CrossRefGoogle Scholar
52.Yeh, T.S. and Sacks, M.D., J. Am. Ceram. Soc. 13 (1988) p. C484.Google Scholar
53.German, R.M., Metall. Trans. A 23A (1992) p. 1455.CrossRefGoogle Scholar
54.Velamakanni, B.V. and Lange, F.F., J. Am. Ceram. Soc. 74 (1991) p. 166.CrossRefGoogle Scholar
55.Milewski, J.V., Katz, H.S., and Lee, K.W., 40th Annu. Tech. Conf. (Society of the Plastic Industry, Atlanta, 1985).Google Scholar
56.Milewski, J.V., Adv. Ceram. Mater. 13 (1986) p. 36.Google Scholar
57.Starr, T.L., Am. Ceram. Soc. Bull. 65 (1986) p. 1293.Google Scholar
58.Peronius, N. and Sweeting, T.J., Powder Technol. 42 (1985) p. 113.CrossRefGoogle Scholar
59.Zok, R., Lange, F.F., and Porter, J.R., J. Am. Ceram. Soc. 74 (1991) p. 1880.CrossRefGoogle Scholar
60.Blackburn, S. and Böhm, H., J. Mater. Sci. 29 (1994) p. 4157.CrossRefGoogle Scholar
61.Ikegami, T., J. Am. Ceram. Soc. 79 (1996) p. 148.CrossRefGoogle Scholar
62.Dinger, D.R., in Science of Whitewares, edited by Henkes, V.E., Onoda, G.Y., and Carty, W.M. (American Ceramic Society, Westerville, OH, 1996) p. 105.Google Scholar
63.Kines, N., MS thesis, Georgia Institute of Technology, 1984.Google Scholar
64.Gursky, B.M., MS thesis, Georgia Institute of Technology, 1986.Google Scholar
65.Smith, P.A. and Haber, R.A., Ceram. Eng. Set. Proc. 10 (1989) p. 1.Google Scholar
66.Smith, P.A. and Haber, R.A., J. Am. Ceram. Soc. 75 (1992) p. 290.CrossRefGoogle Scholar
67.López, L., MS thesis, Clemson University, 1994.Google Scholar
68.Restrepo, J.J., MS thesis, Clemson University, 1992.Google Scholar
69.Restrepo, J.J. and Dinger, D.R., Interceram. 13 (1995) p. 391.Google Scholar
70.Villegas, S., MS thesis, Clemson University, 1995.Google Scholar
71.Villegas, S. and Dinger, D.R., in Revista Ceramica, vol. 274 (40th Congresso Brasileiro de Ceramica, 1996).Google Scholar
72.Villegas, S. and Dinger, D.R., Am. Ceram. Soc. Bull. 13 (1996) p. 71.Google Scholar
73.Villegas, S. and Dinger, D.R., Am. Ceram. Soc. Bull. 75 (1996) p. 79.Google Scholar
74.Dinger, D.R., in Rheology and Rheometry of Clay-Water Systems, 2nd ed. (K-T. Clay Company) in press.Google Scholar
75.Funk, J.E. and Dinger, D.R., Am. Ceram. Soc. Bull. 13 (1994) p. 66.Google Scholar
76.Funk, J.E., Dinger, D.R., and Funk, J.E. Jr., in Proc. Changes in Refractory Technol. Symp. (American Ceramic Society, St. Louis, 1982).Google Scholar
77.Funk, J.E., Dinger, D.R., and Funk, J.E. Jr., Report, Empire State Electric Energy Research Corporation (ESEERCO) (New York, 1980).Google Scholar
78.Funk, J.E. and Dinger, D.R., in Proc. Solids Transport Contractors' Review Meeting (U.S. Department of Energy, PETC, Pittsburgh, 1987).Google Scholar
79.Funk, J.E. and Dinger, D.R., DOE Report No. DE-FG22-84PC70804 (1987).Google Scholar
80.Funk, J.E. and Dinger, D.R. in Proc. Joint Direct Utilization AR&TD Contractors' Review Meeting (PETC/METC, Pittsburgh, 1986) p. 127.Google Scholar
81.Crume, G.W. and Dinger, D.R., Ceram. Eng. Sci. Proc. 13 (1991) p. 68.Google Scholar
82.Funk, J.E. and Dinger, D.R., Am. Ceram. Soc. Bull. 67 (1988) p. 890.Google Scholar
83.Funk, J.E. and Dinger, D.R., Am. Ceram. Soc. Bull. 13 (1995) p. 48.Google Scholar
84.Hafaiedh, A., PhD dissertation, Alfred University, 1988.Google Scholar
85.Dinger, D.R. and Funk, J.E., Mater. Eng. 2 (1991) p. 1.Google Scholar
86.Hafaiedh, A., Dinger, D.R., and Funk, J.E., Mater. Eng. 2 (1991 p. 25.Google Scholar
87.Hafaiedh, A. and Dinger, D.R., Mater. Eng. 2 (1991 p. 169.Google Scholar
88.Hafaiedh, A., Dinger, D.R., and Funk, J.E., Mater. Eng. 2 (1991 p. 205.Google Scholar
89.Löpez-Begué, L.A., Funk, J.E., and Dinger, D.R., “The Influence of Particle Size Distribution on the Rheological Properties ofTriaxial Porcelain Suspensions” (unpublished manuscript).Google Scholar
90.Woodard, K.J., PhD dissertation, Clemson University, 1996.Google Scholar
91.Hafaiedh, A, MS thesis, Alfred University, 1986.Google Scholar
92.Hafaiedh, A, Dinger, D.R., and Funk, J.E., in Proc. 8th Int. Symp. on Coal Slurry Fuels Preparation and Utilization (U.S. Department of Energy, PETC, Orlando, FL, 1986).Google Scholar
93.Funk, J.E. and Dinger, D.R., Ceram. Ind. 13 (1993) p. 63.Google Scholar
94.Gaudin, A.M. and Hukki, R.T., Trans. AIME 13 (1944) p. 67.Google Scholar
95.Smith, P.A. and Haber, R.A., J. Am. Ceram. Soc. 13 (1995) p. 1737.CrossRefGoogle Scholar
96.Peeler, D.K., Taylor, T.D., Dinger, D.R., and Cavin, O.B., in Proc. 3rd Int. Conf. on the Advances in Fusion and Processing of Glass, edited by Varshneya, A.K., Bickford, D.F., and Bihuniak, D. (American Ceramic Society, New Orleans, 1993).Google Scholar
97.Sheckler, C.A. and Dinger, D.R., J. Am. Ceram. Soc. 73 (1990) p. 24.CrossRefGoogle Scholar
98.Takahashi, M. and Suzuki, S., Am. Ceram. Soc. Bull. 13 (1985) p. 1237.Google Scholar
99.Takahashi, M., Suzuki, S., and Kosakai, M., J. Am. Ceram. Soc. 13 (1986) p. 9.CrossRefGoogle Scholar
100.Takahashi, M. and Suzuki, S., Am. Ceram. Soc. Bull. 13 (1986) p. 1587.Google Scholar
101.Lange, F.F., J. Mater. Res. 13 (1987) p. 59.CrossRefGoogle Scholar
102.Bocchini, G.F., Powder Metall. 13 (1987) p. 261.CrossRefGoogle Scholar
103.Zheng, J. and Reed, J.S., J. Am. Ceram. Soc. 71 (1988) p. C456.CrossRefGoogle Scholar
104.Lange, F.F., Lam, D.C.C., and Sudre, O., in Processing Science of Advanced Ceramics, edited by Aksay, I.A., McVay, G.L., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, 1989) p. 309.Google Scholar
105.Glass, S.J., Ewsuk, K.G., and Mahoney, F.M., in Proc. Am. Ceram. Soc. Int. Symp. Manufacturing Practices Technol. (American Ceramic Society, New Orleans, LA, 1995).Google Scholar
106.Readey, M.J. and Mahoney, F.M., in Diversity Into the Next Century Conf., Int. SAMPE Tech. Conf. Ser., No. 27, edited by Martinez, R.J., Arris, H., Emerson, J.E., and Pike, G., (Society for the Advancement of Materials and Process Engineering [SAMPE], Covina, CA, 1995) p. 622.Google Scholar
107.Takahashi, H., Shinohara, N., Uematsu, K., and Junichiro, T., J. Am. Ceram. Soc. 13 (1996) p. 843.CrossRefGoogle Scholar
108.Bocchini, G.F., Int. J. Powder Metall. 13 (1986) p. 185.Google Scholar
109.Rice, E.R. and Tengzelius, J., Powder Metall. 13 (1986) p. 183.CrossRefGoogle Scholar
110.Walton, O.R., in Workshop on Mechanics and Statistical Physics of Particulate Materials (La Jolla, CA, 1994).Google Scholar
111.Chang, J.C., Velamakanni, B.V., Lange, F.F., and Pearson, D.S., J. Am. Ceram. Soc. 13 (1991) p. 2201.CrossRefGoogle Scholar
112.Sumita, S., Rhine, W.E., and Bowen, H.K., J. Am. Ceram. Soc. 13 (1991) p. 2189.CrossRefGoogle Scholar
113.Crum, G., PhD dissertation, Clemson University, 1993.Google Scholar
114.Zheng, J. and Reed, J.S., J. Am. Ceram. Soc. 13 (1989) p. 810.CrossRefGoogle Scholar
115.German, R.M., Acta Metall. Mater. 13 (1992) p. 2085.CrossRefGoogle Scholar
116.Zheng, J. and Reed, J.S., Am. Ceram. Soc. Bull. 13 (1992) p. 1410.Google Scholar
117.Shaw, T.M., Am. Ceram. Soc. Bull. 76 (1993) p. 664.CrossRefGoogle Scholar
118.Liu, Y., Heaney, D.F., and German, R.M., Acta Metall. Mater. 13 (1995) p. 1587.CrossRefGoogle Scholar
119.Wright, J.K., Edirisinghe, M.J., Zhang, J.G., and Evans, J.R.G., J. Am. Ceram. Soc. 13 (1990) p. 2653.CrossRefGoogle Scholar
120.Bandyopadhyay, G. and French, K.W., A m. Ceram. Soc. Bull. 13 (1994) p. 107.Google Scholar
121.Uematsu, K., Ito, H., Ohsaka, S., Takahashi, H., Shinohara, N., and Okumiya, M., J. Am. Ceram. Soc. 13 (1995) p. 3107.CrossRefGoogle Scholar
122.Grutzeck, M.W., Shi, D., Liu, G., and Kwan, S., J. Mater. Set. 13 (1993) p. 3444.CrossRefGoogle Scholar
123.Satake, M., in Powders & Grains 93, edited by Thornton, C. (A.A. Balkema Publishers, Rotterdam, 1993) p. 3.Google Scholar
124.Walton, O.R., in Particulate Two-Phase Flow, edited by Roco, M.C. (Butterworth-Heinemann, Boston, MA, 1993) p. 885.Google Scholar
125.Walton, O.R., Mech. Mater. 13 (1993) p. 239.CrossRefGoogle Scholar
126.Walton, O.R. and Braun, R.L., in joint DOE/NSF Workshop on Flow of Particulates and Fluids (U.S. Department of Energy and the National Science Foundation, Ithaca, NY, 1993).Google Scholar
127.Zhang, T. and Evans, J.R., J. Am. Ceram. Soc. 13 (1993) p. 481.CrossRefGoogle Scholar
128.Kenkre, V.M., Endicott, M.R., Glass, S.J., and Hurd, A.J., J. Am. Ceram. Soc. 79 (1996) p. 3045.CrossRefGoogle Scholar
129.Cass, R.B., Ewsuk, K.G., and Blumenthal, W.R., Ceram. Ind. 13 (1997) p. 36.Google Scholar
130.Nolan, G.T. and Kavanagh, P.E., J. Coatings Technol. 13 (1995) p. 37.Google Scholar