Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T09:44:04.707Z Has data issue: false hasContentIssue false

Paper-based electroanalytical devices for accessible diagnostic testing

Published online by Cambridge University Press:  12 April 2013

E. Jane Maxwell
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University; [email protected]
Aaron D. Mazzeo
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers University; [email protected]
George M. Whitesides
Affiliation:
Wyss Institute of Biologically Inspired Engineering, Harvard University; [email protected]
Get access

Abstract

Microfluidic paper-based analytical devices (μPADs) use the passive capillary-driven flow of aqueous solutions through patterned paper channels to transport a sample fluid into distinct detection zones that contain the reagents for a chemical assay. These devices are simple, affordable, portable, and disposable; they are, thus, well suited for diagnostic applications in resource-limited environments. Adding screen-printed electrodes to the detection zones of a μPAD yields a device capable of performing electrochemical assays (an EμPAD). Electrochemical detection has the advantage over colorimetric detection that it is not affected by interference from the color of the sample and can be quantified with simple electronics. The accessibility of EμPADs, however, is limited by the requirement for an external potentiostat to power and interpret the electrochemical measurement. New developments in paper-based electronics may help loosen this requirement. This review discusses the current capabilities and limitations of EμPADs and paper-based electronics, and sketches the ways in which these technologies can be combined to provide new devices for diagnostic testing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., Anal. Chem. 82, 3 (2009).CrossRefGoogle Scholar
Fu, E., Liang, T., Spicar-Mihalic, P., Houghtaling, J., Ramachandran, S., Yager, P., Anal. Chem. 84, 4574 (2012).CrossRefGoogle Scholar
Khan, M.S., Thouas, G., Shen, W., Whyte, G., Garnier, G., Anal. Chem. 82, 4158 (2010).CrossRefGoogle Scholar
Dungchai, W., Chailapakul, O., Henry, C.S., Anal. Chim. Acta 674, 227 (2010).CrossRefGoogle Scholar
Urinalysis: The Chemical Examination, http://labtestsonline.org/understanding/analytes/urinalysis/ui-exams/start/1 (accessed October 3, 2012).Google Scholar
O’Farrell, B., in Lateral Flow Immunoassay, Wong, R., Tse, H., Eds. (Humana Press, New York, 2009).Google Scholar
Martinez, A., Phillips, S., Butte, M., Whitesides, G., Angew. Chem. Int. Ed. 46, 1318 (2007).CrossRefGoogle Scholar
Bruzewicz, D.A., Reches, M., Whitesides, G.M., Anal. Chem. 80, 3387 (2008).CrossRefGoogle Scholar
Olkkonen, J., Lehtinen, K., Erho, T., Anal. Chem. 82, 10246 (2010).CrossRefGoogle Scholar
Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B., Electrophoresis 30, 1497 (2009).CrossRefGoogle ScholarPubMed
Carrilho, E., Martinez, A.W., Whitesides, G.M., Anal. Chem. 81, 7091 (2009).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Whitesides, G.M., PNAS 105, 19606 (2008).CrossRefGoogle Scholar
Lu, J., Ge, S., Ge, L., Yan, M., Yu, J., Electrochim. Acta 80, 334 (2012).CrossRefGoogle Scholar
Liu, H., Xiang, Y., Lu, Y., Crooks, R.M., Angew. Chem. 124, 7031 (2012).CrossRefGoogle Scholar
Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W., Sindi, H., Whitesides, G.M., Anal. Chem. 80, 3699 (2008).CrossRefGoogle Scholar
D’Orazio, P., Clin. Chim. Acta 334, 41 (2003).CrossRefGoogle Scholar
Blackburn, G.F., Shah, H.P., Kenten, J.H., Leland, J., Kamin, R.A., Link, J., Peterman, J., Powell, M.J., Shah, A., Talley, D.B., Clin. Chem. 37, 1534 (1991).CrossRefGoogle Scholar
Nie, Z., Nijhuis, C.A., Gong, J., Chen, X., Kumachev, A., Martinez, A.W., Narovlyansky, M., Whitesides, G.M., Lab Chip 10, 477 (2010).CrossRefGoogle Scholar
Dungchai, W., Chailapakul, O., Henry, C.S., Anal. Chem. 81, 5821 (2009).CrossRefGoogle Scholar
Cui, G., Kim, S.J., Choi, S.H., Nam, H., Cha, G.S., Paeng, K.-J., Anal. Chem. 72, 1925 (2000).CrossRefGoogle Scholar
Nie, Z., Deiss, F., Liu, X., Akbulut, O., Whitesides, G.M., Lab Chip 10, 3163 (2010).CrossRefGoogle Scholar
Lankelma, J., Nie, Z., Carrilho, E., Whitesides, G.M., Anal. Chem. 84, 4147 (2012).CrossRefGoogle Scholar
Liu, H., Crooks, R.M., Anal. Chem. 84, 2528 (2012).CrossRefGoogle Scholar
Osteryoung, J.G., Osteryoung, R.A., Anal. Chem. 57, 101A (1985).CrossRefGoogle Scholar
Du, D., Wang, J., Wang, L., Lu, D., Lin, Y., Anal. Chem. 84, 1380 (2012).CrossRefGoogle Scholar
Wang, L., Lu, D., Wang, J., Du, D., Zou, Z., Wang, H., Smith, J.N., Timchalk, C., Liu, F., Lin, Y., Biosens. Bioelectron. 26, 2835 (2010).CrossRefGoogle Scholar
Liu, G., Lin, Y.-Y., Wang, J., Wu, H., Wai, C.M., Lin, Y., Anal. Chem. 79, 7644 (2007).CrossRefGoogle Scholar
Lee, K.S., Kim, T.-H., Shin, M.-C., Lee, W.-Y., Park, J.-K., Anal. Chim. Acta 380, 17 (1999).CrossRefGoogle Scholar
Yan, M., Zang, D., Ge, S., Ge, L., Yu, J., Biosens. Bioelectron. 38, 355 (2012).CrossRefGoogle Scholar
Wang, P., Ge, L., Yan, M., Song, X., Ge, S., Yu, J., Biosens. Bioelectron. 32, 238 (2011).CrossRefGoogle Scholar
Jagadeesan, K.K., Kumar, S., Sumana, G., Electrochem. Commun. 20, 71 (2012).CrossRefGoogle Scholar
Siegel, A.C., Phillips, S.T., Dickey, M.D., Lu, N., Suo, Z., Whitesides, G.M., Adv. Funct. Mater. 20, 28 (2010).CrossRefGoogle Scholar
Liu, X., Mwangi, M., Li, X., O’Brien, M., Whitesides, G.M., Lab Chip 11, 2189 (2011).CrossRefGoogle Scholar
Renedo, O.D., Alonso-Lomillo, M.A., Martinez, M.J.A., Talanta 73, 202 (2007).CrossRefGoogle Scholar
Wring, S.A., Hart, J.P., Bracey, L., Birch, B.J., Anal. Chim. Acta 231, 203 (1990).CrossRefGoogle Scholar
Russo, A., Ahn, B.Y., Adams, J.J., Duoss, E.B., Bernhard, J.T., Lewis, J.A., Adv. Mater. 23, 3426 (2011).CrossRefGoogle Scholar
Mirica, K.A., Weis, J.G., Schnorr, J.M., Esser, B., Swager, T.M., Angew. Chem. Int. Ed. 51, 10740 (2012).CrossRefGoogle Scholar
Siegel, A.C., Phillips, S.T., Wiley, B.J., Whitesides, G.M., Lab Chip 9, 2775 (2009).CrossRefGoogle Scholar
Mazzeo, A.D., Kalb, W.B., Chan, L., Killian, M.G., Bloch, J.-F., Mazzeo, B.A., Whitesides, G.M., Adv. Mater. 24, 2850 (2012).CrossRefGoogle Scholar
Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Dehm, C., Appl. Phys. Lett. 84, 2673 (2004).CrossRefGoogle Scholar
Fortunato, E., Correia, N., Barquinha, P., Pereira, L., Goncalves, G., Martins, R., IEEE Electron Device Lett. 29, 988 (2008).CrossRefGoogle Scholar
Martins, R., Barquinha, P., Pereira, L., Correia, N., Gonçalves, G., Ferreira, I., Fortunato, E., Appl. Phys. Lett. 93, 203501 (2008).CrossRefGoogle Scholar
Martins, R., Nathan, A., Barros, R., Pereira, L., Barquinha, P., Correia, N., Costa, R., Ahnood, A., Ferreira, I., Fortunato, E., Adv. Mater. 23, 4491 (2011).CrossRefGoogle Scholar
Yun, S., Jang, S.-D., Yun, G.-Y., Kim, J.-H., Kim, J., Appl. Phys. Lett. 95, 104102 (2009).CrossRefGoogle Scholar
Nilsson, D., Kugler, T., Svensson, P.-O., Berggren, M., Sens. Actuators, B 86, 193 (2002).CrossRefGoogle Scholar
Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M., Adv. Energy Mater. 1, 917 (2011).CrossRefGoogle Scholar
Hilder, M., Winther-Jensen, B., Clark, N.B., J. Power Sources 194, 1135 (2009).CrossRefGoogle Scholar
Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y., ACS Nano 4, 5843 (2010).CrossRefGoogle Scholar
Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A., Nano Lett. 9, 3635 (2009).CrossRefGoogle Scholar
Barr, M.C., Rowehl, J.A., Lunt, R.R., Xu, J., Wang, A., Boyce, C.M., Im, S.G., Bulović, V., Gleason, K.K., Adv. Mater. 23, 3500 (2011).CrossRefGoogle Scholar
Wang, J., Chem. Rev. 108, 814 (2007).CrossRefGoogle Scholar
Ruano-Lopez, J.M., Agirregabiria, M., Olabarria, G., Verdoy, D., Bang, D.D., Bu, M., Wolff, A., Voigt, A., Dziuban, J.A., Walczak, R., Berganzo, J., Lab Chip 9, 1495 (2009).CrossRefGoogle Scholar
Novell, M., Parrilla, M., Crespo, G.A., Rius, F.X., Andrade, F.J., Anal. Chem. 84, 4695 (2012).CrossRefGoogle Scholar
Delaney, J.L., Hogan, C.F., Tian, J., Shen, W., Anal. Chem. 83, 1300 (2011).CrossRefGoogle Scholar
Ge, L., Yan, J., Song, X., Yan, M., Ge, S., Yu, J., Biomaterials 33, 1024 (2011).CrossRefGoogle Scholar
Chin, C.D., Linder, V., Sia, S.K., Lab Chip 7, 41 (2007).CrossRefGoogle Scholar