Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T08:25:14.963Z Has data issue: false hasContentIssue false

Opportunities and challenges for first-principles materials design and applications to Li battery materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The idea of first-principles methods is to determine the properties of materials by solving the basic equations of quantum mechanics and statistical mechanics. With such an approach, one can, in principle, predict the behavior of novel materials without the need to synthesize them and create a virtual design laboratory. By showing several examples of new electrode materials that have been computationally designed, synthesized, and tested, the impact of first-principles methods in the field of Li battery electrode materials will be demonstrated. A significant advantage of computational property prediction is its scalability, which is currently being implemented into the Materials Genome Project at the Massachusetts Institute of Technology. Using a high-throughput computational environment, coupled to a database of all known inorganic materials, basic information on all known inorganic materials and a large number of novel “designed” materials is being computed. Scalability of high-throughput computing can easily be extended to reach across the complete universe of inorganic compounds, although challenges need to be overcome to further enable the impact of first-principles methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eagar, T.W., Technol. Rev. 98, 43 (1995).Google Scholar
2.Whittingham, M., Science 192, 1126 (1976).CrossRefGoogle Scholar
3.Hafner, J., Wolverton, C., Ceder, G., MRS Bull. 31, 659 (2006).CrossRefGoogle Scholar
4.Ceder, G., Aydinol, M.K., Solid State Ionics 109, 151 (1998).CrossRefGoogle Scholar
5.Zhou, F., Cococcioni, M., Marianetti, C., Morgan, D., Ceder, G., Phys. Rev. B 70, 235121 (2004).CrossRefGoogle Scholar
6.Wang, L., Maxisch, T., Ceder, G., Phys. Rev. B 73, 195107 (2006).CrossRefGoogle Scholar
7.Wang, L., Maxisch, T., Ceder, G., Chem. Mater. 19, 543 (2007).CrossRefGoogle Scholar
8.Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I., J. Phys. Condens. Matter 9, 767 (1997).CrossRefGoogle Scholar
9.Van der Ven, A., Ceder, G., Electrochem. Solid-State Lett. 3, 301 (2000).CrossRefGoogle Scholar
10.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
11.Morgan, D., Van der Ven, A., Ceder, G., Electrochem. Solid-State Lett. 7, A30 (2004).CrossRefGoogle Scholar
12.Kang, B., Ceder, G., Nature 458, 190 (2009).CrossRefGoogle Scholar
13.Ping Ong, S., Wang, L., Kang, B., Ceder, G., Chem. Mater. 20, 1798 (2008).CrossRefGoogle Scholar
14.Kayyar, A., Qian, H., Luo, J., Appl. Phys. Lett. 95, 221905 (2009).CrossRefGoogle Scholar
15.Ong, S.P., Jain, A., Hautier, G., Kang, B., Ceder, G., Electrochem. Commun. 12, 427 (2010).CrossRefGoogle Scholar
16.Kim, S., Kim, J., Gwon, H., Kang, K., J. Electrochem. Soc. 156, A635 (2009).CrossRefGoogle Scholar
17.Chen, G., Richardson, T.J., J. Power Sources 195, 1221 (2010).CrossRefGoogle Scholar
18.Kang, K., Meng, Y., Breger, J., Grey, C., Ceder, G., Science 311, 977 (2006).CrossRefGoogle Scholar
19.Reed, J., Ceder, G., Chem. Rev. 104, 4513 (2004).CrossRefGoogle Scholar
20.Reed, J., Ceder, G., Electrochem. Solid-State Lett. 5, A145 (2002).CrossRefGoogle Scholar
21. The Materials Genome; www.materialsgenome.org.Google Scholar
22.Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Goodenough, J.B., J. Electrochem. Soc. 144, 2581 (1997).CrossRefGoogle Scholar
23.Godshall, N.A., Raistrick, I.D., Huggins, R.A., J. Electrochem. Soc. 131, 543 (1984).CrossRefGoogle Scholar