Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T08:28:03.676Z Has data issue: false hasContentIssue false

New Biomaterials For Tissue Engineering

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The success of tissue engineering rests on the ability to direct specific cell types to multiply, migrate, and express normal physiologic behaviors in order to yield a cellular organization that performs the functions of the desired tissue. For example the engineering of living bone to repair skeletal defects has focused on growing osteoblasts—the cells responsible for bone formation—on degradable polymer matrices in vitro. The polymer matrix initially serves as the scaffold for bone-cell proliferation and maturation. Ideally the cells form a bonelike tissue that after implantation is fully integrated into the patient's own bone, thus repairing the bone injury or defect. Soon thereafter, its function complete, the polymer scaffold resorbs away. Readily apparent is the crucial role the scaffold material occupies in tissue engineering since it serves as the template for cell growth and tissue formation. It is the interaction between the cell and the material that dictates whether the cells will proliferate, mature, and express the desired tissue characteristics.

A critical issue facing the biomedical industry today is the availability of raw materials for medical-device manufacture. Furthermore it is now recognized that the materials base of the medical-device industry is outdated. Metals and various industrial plastics (e.g., polysiloxanes, polyurethanes, Dacron®, Teflon®, polyethylene) are the most commonly used biomaterials. These biostable, synthetic implant materials lack the biological sequences and patterns crucial to normal cell function and can trigger aberrant cell responses. Likewise few degradable polymers are available to the medical-device designer and tissue engineer, representing another limitation of the materials base of the medical-device industry (Table I).

Type
Tissue Engineering
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Market Study: Biomaterials Supply for Permanent Medical Implants (Aronoff Associates, New York, March 1994) prepared for Health Industry Manufacturers Association.Google Scholar
2.Kohn, J., Pharm. Res. 13 (6) (1996) p. 815.CrossRefGoogle Scholar
3.Eisenberger, P., NIH Workshop: Biomaterials and Medical Implant Science, Bethesda, MD (National Institutes of Health, Bethesda, 1995).Google Scholar
4.Böstman, O., Hirvensalo, E., Vainionpää, S., Mäkelä, A., Vihtonen, K., Törmälä, P., and Rokkanen, P., Clin. Ortho. 238 (1989) p. 195.CrossRefGoogle Scholar
5.Vert, M., Christel, P., Chabot, F., and Leray, J., in Macromolecular Biomaterials, edited by Hastings, G.W. and Ducheyne, P. (CRC Press, Inc., Boca Raton, 1984) p. 119.Google Scholar
6.Vert, M., Li, S., and Garreau, H., J. Control. Res. 16 (1991) p. 15.CrossRefGoogle Scholar
7.Engelberg, I. and Kohn, J., Biomaterials 121 (3) (1991) p. 292.CrossRefGoogle Scholar
8.Mikos, A.G., Sarakins, G., Leite, S.M., Vacanti, J.P., and Langer, R., Biomaterials 14 (1993) p. 323.CrossRefGoogle Scholar
9.Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R., J. Biomed. Mater. Res. 27 (1993) p. 183.CrossRefGoogle Scholar
10.Vacanti, C.A., Kim, W., Upton, J., Vacanti, M.P., Mooney, D., Schloo, B., and Vacanti, J.P., Transplant Proc. 25 (1993) p. 1019.Google Scholar
11.Vacanti, C.A., Langer, R., Schloo, B., and Vacanti, J.P., Plast. Reconstr. Surg. 88 (5) (1991) p. 753.CrossRefGoogle Scholar
12.Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G., and Langer, R., J. Biomed. Mater. Res. 27 (1993) p. 11.CrossRefGoogle Scholar
13.Thomson, R.C., Wake, M.C., Yaszemski, M.J., and Mikos, A.G., Adv. Polym. Sci. 122 (1995) p. 245.CrossRefGoogle Scholar
14.Kohn, J. and Langer, R., J. Am. Chem. Soc. 109 (1987) p. 817.CrossRefGoogle Scholar
15.Kohn, J., Trends Polym. Sci. 1 (7) (1993) p. 206.Google Scholar
16.Ertel, S.I. and Kohn, J., J. Biomed. Mater. Res. 28 (1994) p. 919.CrossRefGoogle Scholar
17.Fiordeliso, J., Bron, S., and Kohn, J., J. Biomater. Sci. (Polym. Ed.) 5 (6) (1994) p. 497.Google Scholar
18.Zhou, J., Ertel, S.I., Buettner, H.M., and Kohn, J., 20th Annual Meeting of the Society for Biomaterials, Boston (Society for Biomaterials, Minneapolis, 1994) p. 371.Google Scholar
19.Kohn, J., Yu, C., Yeo, S.D., and Debenedetti, P.G., Proc. 21st Int. Symp. on Controlled Release of Bioactive Materials, Nice, France (Controlled Release Society, 1994) p. 132.Google Scholar
20.de Groot, J.H., Nijenhuis, A.J., Bruin, P., Pennings, A.J., Veth, R.P.H., and Klompmaker, J., Coll. Polym. Sci. 268 (1990) p. 1073.CrossRefGoogle Scholar
21.Boyan, B.D., Hummert, T.W., Dean, D.D., and Schwartz, Z., Biomaterials 17 (1996) p. 137.CrossRefGoogle Scholar
22.Daniels, A.U., Chang, M.K.O., Andriano, K.P., and Heller, J., J. Appl. Biomater. 1 (1990) p. 57.CrossRefGoogle Scholar
23.Choueka, J., Charvet, J.L., Koval, K.J., Alexander, H., James, K.S., Hooper, K.A., and Kohn, J., J. Biomed. Mater. Res. 31 (1996) p. 35.3.0.CO;2-R>CrossRefGoogle Scholar
24.Ertel, S.I., Kohn, J., Zimmerman, M.C., and Parsons, J.R., J. Biomed. Mater. Res. 29 (11) (1995) p. 1337.CrossRefGoogle Scholar
25.Lin, S., Krebs, S., and Kohn, J., The 17th Annual Meeting of the Society of Biomaterials, Scottsdale, AR (Society for Biomaterials, Algonquin, IL, 1991) p. 187.Google Scholar
26.Mikos, A.G., Sarakinos, G., Lyman, M.D., Ingber, D.E., Vacanti, J.P., and Langer, R., Biotechnol. Bioeng. 42 (1993) p. 716.CrossRefGoogle Scholar
27.Park, A. and Cima, L.G., J. Biomed. Mater. Res. 31 (1996) p. 117.CrossRefGoogle Scholar
28.Bucholz, R.W., Henry, S., and Henley, M.B., J. Bone Joint Surg. Am. 76 (3) (1994) p. 319.CrossRefGoogle Scholar
29.Pistner, H., Gutwald, R., Ordung, R., Reuther, J., and Mühling, J., Biomaterials 14 (9) (1993) p. 671.CrossRefGoogle Scholar
30.Suganuma, J. and Alexander, H., J. Appl. Biomater. 4 (1993) p. 13.CrossRefGoogle Scholar
31.Daniels, A.U., Taylor, M.S., Andriano, K.P., and Heller, J., Proc. Orthop. Res. Soc. 17 (1992) p. 88.Google Scholar
32.Taylor, M.S., Daniels, A.U., Andriano, K.P., and Heller, J., J. Appl. Biomater. 5 (1994) p. 151.CrossRefGoogle Scholar
33.Yu, H., Lin, J., and Langer, R., 14th Int. Symp. Controlled Release Bioactive Mater., Toronto, edited by Lee, P.I. and Leonhardt, B.A. (Controlled Release Society, Lincolnshire, IL, 1987) p. 109.Google Scholar
34.Yu-Kwon, H. and Langer, R., Macromolecules 22 (1989) p. 3250.CrossRefGoogle Scholar
35.Gelbinand, M.E.Kohn, J., J. Am. Chem. Soc. 114 (1992) p. 3962.CrossRefGoogle Scholar
36.Zhou, Q.X. and Kohn, J., Macromolecules 23 (1990) p. 3399.CrossRefGoogle Scholar
37.Fietier, I., Le Borgne, A., and Spassky, N., Polym. Bull. 24 (1990) p. 349.CrossRefGoogle Scholar
38.Pulapura, S., Li, C., and Kohn, J., Biomaterials 11 (1990) p. 666.CrossRefGoogle Scholar
39.Silver, F.H., Marks, M., Kato, Y.P., Li, C., Pulapura, S., and Kohn, J., J. Long-Term Effects Med. Implants 1 (4) (1992) p. 329.Google Scholar
40.Pulapura, S. and Kohn, J., Biopolymers 32 (1992) p. 411.CrossRefGoogle Scholar
41.Kohn, J., 20th Annual Meeting of the Society for Biomaterials, Boston (Society for Biomaterials, Minneapolis, 1994) p. 67.Google Scholar