Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T07:47:54.820Z Has data issue: false hasContentIssue false

Nature’s functional nanomaterials: Growth or self-assembly?

Published online by Cambridge University Press:  12 February 2019

Bodo D. Wilts
Affiliation:
Adolphe Merkle Institute, University of Fribourg, Switzerland; [email protected]
Peta L. Clode
Affiliation:
Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Australia; [email protected]
Nipam H. Patel
Affiliation:
Marine Biological Laboratory, The University of Chicago, USA; [email protected]
Gerd E. Schröder-Turk
Affiliation:
School of Engineering and Information Technology, Murdoch University, Australia; [email protected]
Get access

Abstract

Nature’s optical nanomaterials are poised to form the platform for future optical devices with unprecedented functionality. The brilliant colors of many animals arise from the physical interaction of light with nanostructured, multifunctional materials. While their length scale is typically in the 100-nm range, the morphology of these structures can vary strongly. These biological nanostructures are obtained in a controlled manner, using biomaterials under ambient conditions. The formation processes nature employs use elements of both equilibrium self-assembly and far-from-equilibrium and growth processes. This renders not only the colors themselves, but also the formation processes technologically and ecologically highly relevant. Yet, for many biological nanostructured materials, little is known about the formation mechanisms—partially due to a lack of in vivo imaging methods. Here, we present the toolbox of natural multifunctional nanostructures and the current knowledge about the understanding of their far-from-equilibrium assembly processes.

Type
Bioinspired Far-From-Equilibrium Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiou, T.-H., Kleinlogel, S., Cronin, T., Caldwell, R., Loeffler, B., Siddiqi, A., Goldizen, A., Marshall, J., Curr. Biol. 18, 429 (2008).CrossRefGoogle Scholar
Schroeder, T.B.H., Houghtaling, J., Wilts, B.D., Mayer, M., Adv. Mater. 30, 1705322 (2018).CrossRefGoogle Scholar
Srinivasarao, M., Chem. Rev. 99, 1935 (1999).CrossRefGoogle Scholar
Vukusic, P., Sambles, J.R., Nature 424, 852 (2003).CrossRefGoogle Scholar
Kolle, M., Lee, S., Adv. Mater. 30, 1702669 (2017).CrossRefGoogle Scholar
Telford, A.M., Hawkett, B.S., Such, C., Neto, C., Chem. Mater. 25, 3472 (2013).CrossRefGoogle Scholar
Gan, Z., Turner, M.D., Gu, M., Sci. Adv. 2, e1600084 (2016).CrossRefGoogle Scholar
Dolan, J.A., Wilts, B.D., Vignolini, S., Baumberg, J.J., Steiner, U., Wilkinson, T.D., Adv. Opt. Mater. 3, 12 (2015).CrossRefGoogle Scholar
Hyde, S.T., O’Keeffe, M., Proserpio, D.M., Angew. Chem. Int. Ed. Engl. 47, 7996 (2008).CrossRefGoogle Scholar
Hyde, S.T., Andersson, S., Ericson, B., Larsson, K., Z. Kristallogr. Cryst. Mater. 168, 213 (1984).CrossRefGoogle Scholar
Seddon, A.M., Hallett, J., Beddoes, C., Plivelic, T.S., Squires, A.M., Langmuir 30, 5705 (2014).CrossRefGoogle Scholar
Negrini, R., Mezzenga, R., Langmuir 28, 16455 (2012).CrossRefGoogle Scholar
Khandpur, A.K., Foerster, S., Bates, F.S., Hamley, I.W., Ryan, A.J., Bras, W., Almdal, K., Mortensen, K., Macromolecules 28, 8796 (1995).CrossRefGoogle Scholar
Attard, G.S., Glyde, J.C., Göltner, C.G., Nature 378, 366 (1995).CrossRefGoogle Scholar
Alfredsson, V., Anderson, M.W., Chem. Mater. 8, 1141 (1996).CrossRefGoogle Scholar
Zabara, A., Negrini, R., Onaca-Fischer, O., Mezzenga, R., Small 9, 3602 (2013).CrossRefGoogle Scholar
Drummond, C.J., Fong, C., Curr. Opin. Colloid Interface Sci. 4, 449 (1999).CrossRefGoogle Scholar
Almsherqi, Z.A., Landh, T., Kohlwein, S.D., Deng, Y., Int. Rev. Cell Mol. Biol. 274, 275 (2009).CrossRefGoogle Scholar
Saranathan, V., Seago, A.E., Sandy, A., Narayanan, S., Mochrie, S.G., Dufresne, E.R., Cao, H., Osuji, C.O., Prum, R.O., Nano Lett . 15, 3735 (2015).CrossRefGoogle Scholar
Wilts, B.D., Zubiri, B.A., Klatt, M.A., Butz, B., Fischer, M.G., Kelly, S.T., Spiecker, E., Steiner, U., Schröder-Turk, G.E., Sci. Adv. 3, e1603119 (2017).CrossRefGoogle Scholar
Evans, M.E., Roth, R., Phys. Rev. Lett. 112, 038102 (2014).CrossRefGoogle Scholar
Salentinig, S., Phan, S., Khan, J., Hawley, A., Boyd, B.J., ACS Nano 7, 10904 (2013).CrossRefGoogle Scholar
Saba, M., Thiel, M., Turner, M.D., Hyde, S.T., Gu, M., Grosse-Brauckmann, K., Neshev, D.N., Mecke, K., Schröder-Turk, G.E., Phys. Rev. Lett. 106, 103902 (2011).CrossRefGoogle Scholar
Wilts, B.D., Michielsen, K., De Raedt, H., Stavenga, D.G., Interface Focus 2, 681 (2012).CrossRefGoogle Scholar
Pouya, C., Vukusic, P., Interface Focus 2, 645 (2012).CrossRefGoogle Scholar
Winter, B., Butz, B., Dieker, C., Schröder-Turk, G.E., Mecke, K., Spiecker, E., Proc. Natl. Acad. Sci. U.S.A. 112, 12911 (2015).CrossRefGoogle Scholar
Saba, M., Wilts, B.D., Hielscher, J., Schröder-Turk, G.E., Mater. Today Proc. 1, 193 (2014).CrossRefGoogle Scholar
Schröder-Turk, G.E., Wickham, S., Averdunk, H., Brink, F., Fitz Gerald, J.D., Poladian, L., Large, M.C., Hyde, S.T., J. Struct. Biol. 174, 290 (2011).CrossRefGoogle Scholar
John, S., Phys. Rev. Lett. 58, 2486 (1987).CrossRefGoogle Scholar
Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
Saranathan, V., Forster, J.D., Noh, H., Liew, S.-F., Mochrie, S.G.J., Cao, H., Dufresne, E.R., Prum, R.O., J. R. Soc. Interface 9, 2563 (2012).CrossRefGoogle Scholar
Shawkey, M.D., Saranathan, V., Pálsdóttir, H., Crum, J., Ellisman, M.H., Auer, M., Prum, R.O., J. R. Soc. Interface 6, S213 (2009).Google Scholar
Prum, R.O., in Bird Coloration, Volume 1: Mechanisms and Measurements, Hill, G.E., McGraw, K.J., Eds. (Harvard University Press, Cambridge, MA, 2006), pp. 295353.Google Scholar
Prum, R.O., Torres, R.H., Williamson, S., Dyck, J., Nature 396, 28 (1998).CrossRefGoogle Scholar
D’Alba, L., Kieffer, L., Shawkey, M.D., J. Exp. Biol. 215, 1272 (2012).CrossRefGoogle Scholar
Stavenga, D.G., Tinbergen, J., Leertouwer, H.L., Wilts, B.D., J. Exp. Biol. 214, 3960 (2011).CrossRefGoogle Scholar
Leertouwer, H.L., Wilts, B.D., Stavenga, D.G., Opt. Express 19, 24061 (2011).CrossRefGoogle Scholar
Yin, H., Dong, B., Liu, X., Zhan, T., Shi, L., Zi, J., Yablonovitch, E., Proc. Natl. Acad. Sci. U.S.A. 109, 10798 (2012).CrossRefGoogle Scholar
Angelov, B., Angelova, A., Drechsler, M., Garamus, V.M., Mutafchieva, R., Lesieur, S., Soft Matter 11, 3686 (2015).CrossRefGoogle Scholar
Cao, X., Xu, D., Yao, Y., Han, L., Terasaki, O., Che, S., Chem. Mater. 28, 3961 (2016).Google Scholar
Ghiradella, H., J. Morphol. 202, 69 (1989).CrossRefGoogle Scholar
Ghiradella, H., Adv. Insect Physiol. 38, 135 (2010).CrossRefGoogle Scholar
Saranathan, V., Osuji, C.O., Mochrie, S.G., Noh, H., Narayanan, S., Sandy, A., Dufresne, E.R., Prum, R.O., Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).CrossRefGoogle Scholar
Ghiradella, H., J. Morphol. 202, 69 (1989).CrossRefGoogle Scholar
Ghiradella, H., in Microscopic Anatomy of Invertebrates, Volume 11A, Locke, M., Ed. (Wiley, New York, 1998), pp. 257287.Google Scholar
Dinwiddie, A., Null, R., Pizzano, M., Chuong, L., Krup, A.L., Tan, H.E., Patel, N.H., Dev. Biol. 392, 404 (2014).CrossRefGoogle Scholar
Saranathan, V., Osuji, C.O., Mochrie, S.G., Noh, H., Narayanan, S., Sandy, A., Dufresne, E.R., Prum, R.O., Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).CrossRefGoogle Scholar
Parker, A.R., Townley, H.E., Bioinspir. Biomim. Nanobiomater. 4, 68 (2015).CrossRefGoogle Scholar
Guo, Y., Li, D., Zhang, S., Yang, Y., Liu, J.-J., Wang, X., Liu, C., Milkie, D.E., Moore, R.P., Tulu, U.S., Kiehart, D.P., Hu, J., Lippincott-Schwartz, J., Betzig, E., Li, D., Cell 175, 1430 (2018).CrossRefGoogle Scholar
Wagner, J.B., Cavalca, F., Damsgaard, C.D., Duchstein, L.D.L., Hansen, T.W., Micron 43, 1169 (2012).CrossRefGoogle Scholar
Pribil, M., Labs, M., Leister, D., J. Exp. Bot. 65, 1955 (2014).CrossRefGoogle Scholar
Dufresne, E.R., Noh, H., Saranathan, V., Mochrie, S.G., Cao, H., Prum, R.O., Soft Matter 5, 1792 (2009).CrossRefGoogle Scholar
Dong, B., Zhan, T., Liu, X., Jiang, L., Liu, F., Hu, X., Zi, J., Phys. Rev. E 84, 011915 (2011).CrossRefGoogle Scholar
Prum, R.O., Dufresne, E.R., Quinn, T., Waters, K., J. R. Soc. Interface 6, S253 (2009).CrossRefGoogle Scholar