Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T20:01:47.788Z Has data issue: false hasContentIssue false

Nanoscale studies of plasmonic hot spots using super-resolution optical imaging

Published online by Cambridge University Press:  15 August 2012

Maggie L. Weber
Affiliation:
University of Texas at Austin; [email protected]
Katherine A. Willets
Affiliation:
University of Texas at Austin; [email protected]
Get access

Abstract

Plasmonic metal nanoparticles have the ability to act as nanoscale antennas for visible and near-IR (infrared) light, leading to increased electromagnetic fields at their surface. As a result, Raman scattering and/or fluorescence from nearby molecules can be enhanced by many orders of magnitude. However, imaging how these molecules interact with the enhanced fields at the surface of noble metal nanoparticles is a challenge due to the diffraction limit of light. In this article, we review super-resolution imaging of plasmonic hot spots using two all-optical readouts, surface-enhanced Raman scattering and surface-enhanced fluorescence, which are used to locate and track single or a few molecules on the surface of nanoscale-roughened metals. These super-resolution imaging techniques allow localization of the emission centroid of an emitter to better than 5 nm and allow mapping of the electromagnetic field enhancement experienced by molecules at the nanoparticle surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schwartzberg, A.M., Zhang, J.Z., J. Phys. Chem. C 112 (28), 10323 (2008).CrossRefGoogle Scholar
2.Qian, X.-M., Nie, S.M., Chem. Soc. Rev. 37, 912 (2008).CrossRefGoogle Scholar
3.Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Van Duyne, R.P., Zou, S., MRS Bull. 30, 368 (2005).CrossRefGoogle Scholar
4.Hutter, E., Fendler, J.H., J. Adv. Mater. 16 (19), 1685 (2004).CrossRefGoogle Scholar
5.Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267 (2006).CrossRefGoogle Scholar
6.Hao, E., Schatz, G.C., J. Chem. Phys. 120 (1), 357 (2004).CrossRefGoogle Scholar
7.Xu, H., Bjerned, E.J., Kall, M., Borjesson, L., Phys. Rev. Lett. 83 (21), 4357 (1999).CrossRefGoogle Scholar
8.Mcmahon, J.M., Henry, A.-I., Wustholz, K.L., Natan, M.J., Freeman, R., Van Duyne, R.P., Schatz, G.C., Anal. Bioanal. Chem. 394, 1819 (2009).CrossRefGoogle Scholar
9.Hao, E., Schatz, G.C., Hupp, J.T., J. Fluorescence 14 (4), 331 (2004).CrossRefGoogle Scholar
10.Yang, W.-H., Schatz, G.C., Van Duyne, R.P., J. Chem. Phys. 103 (3), 869 (1995).CrossRefGoogle Scholar
11.Draine, B.T., Flatau, P.J., J. Opt. Soc. Am. A 11 (4), 1491 (1994).CrossRefGoogle Scholar
12.Yoshida, K.-I., Itoh, T., Tamaru, H., Biju, V., Ishikawa, M., Ozaki, Y., Phys. Rev. B 81 (11), 115406/1 (2010).CrossRefGoogle Scholar
13.McMahon, J.M., Wang, Y., Sherry, L.J., Van Duyne, R.P., Marks, L.D., Gray, S.K., Schatz, G.C., J. Phys. Chem. 113 (7), 2731 (2009).Google Scholar
14.Oubre, C., Nordlander, P., J. Phys. Chem. B 109, 10042 (2005).CrossRefGoogle Scholar
15.Lal, S., Grady, N.K., Kundu, J., Levin, C.S., Lassiter, J.B., Halas, N.J., Chem. Soc. Rev. 37, 898 (2008).CrossRefGoogle Scholar
16.Fort, E., Gresillon, S., J. Phys. D: Appl. Phys. 41, 1 (2007).Google Scholar
17.Johansson, P., Xu, H., Kall, M., Phys. Rev. B 72 (3), 035427\1 (2005).CrossRefGoogle Scholar
18.Kall, M., Xu, H., Johansson, P., J. Raman Spectrosc. 36, 510 (2005).CrossRefGoogle Scholar
19.Xu, H., Wang, X.-H., Persson, M.P., Xu, H.Q., Kall, M., Johansson, P., Phys. Rev. Lett. 93, 243002/1 (2004).Google Scholar
20.Nie, S., Emory, S.R., Science 275, 1102 (1997).CrossRefGoogle Scholar
21.Kneipp, K., Wang, Y., Dasari, R.R., Feld, M.S., Appl. Spec. 49 (6), 780 (1995).CrossRefGoogle Scholar
22.Hildebrandt, P., Stockburger, M., J. Phys. Chem. 88, 5935 (1984).CrossRefGoogle Scholar
23.Kneipp, H., Kneipp, J., Kneipp, K., Anal. Chem. 78 (4), 1363 (2006).CrossRefGoogle Scholar
24.Kneipp, K., Wang, Y., Harald, K., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Phys. Rev. Lett. 78, 1667 (1997).CrossRefGoogle Scholar
25.Le Ru, E.C., Etchegoin, P.G., Chem. Phys. Lett. 243, 63 (2006).CrossRefGoogle Scholar
26.Ausman, L.K., Schatz, G.C., J. Chem. Phys. 131, 084708/1 (2009).CrossRefGoogle Scholar
27.Fang, Y., Seong, N.-H., Dlott, D.D., Science 321, 388 (2008).CrossRefGoogle Scholar
28.Etchegoin, P.G., Le Ru, E.C., Phys. Chem. Chem. Phys. 10, 6079 (2008).CrossRefGoogle Scholar
29.Wang, Y., Eswaramoorthy, S.K., Sherry, L.J., Dieringer, J.A., Camden, J.P., Schatz, G.C., Van Duyne, R.P., Marks, L.D., Ultramicroscopy 109, 1110 (2009).CrossRefGoogle Scholar
30.Weber, M.L., Willets, K.A., J. Phys. Chem. Lett. 2, 1766 (2011).CrossRefGoogle Scholar
31.Stranahan, S.M., Willets, K.A., Nano Lett. 10, 3777 (2010).CrossRefGoogle Scholar
32.Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A., ACS Nano 6 (2), 1839 (2012).CrossRefGoogle Scholar
33.Gordon, M.P., Ha, T., Selvin, P.R., Proc. Natl. Acad. Sci. U.S.A. 101 (17), 6462 (2004).CrossRefGoogle Scholar
34.Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R., Science 300, 2061 (2003).CrossRefGoogle Scholar
35.Thompson, R.E., Larson, D.R., Webb, W.W., Biophys. J. 82 (5), 2775 (2002).CrossRefGoogle Scholar
36.Yildiz, A., Selvin, P.R., Acc. Chem. Res 38, 574 (2005).CrossRefGoogle Scholar
37.Weiss, A., Haran, G., J. Phys. Chem. B 105, 12348 (2001).CrossRefGoogle Scholar
38.Maruyama, Y., Ishikawa, M., Futamata, M., J. Phys. Chem. B 108, 673 (2004).CrossRefGoogle Scholar
39.Ausman, L.K., Schatz, G.C., J. Chem. Phys. 131, 084708/1 (2009).CrossRefGoogle Scholar
40.McLellan, J.M., Li, Z.-Y., Siekkinen, A.R., Xia, Y., Nano Lett. 7 (4), 1013 (2007).CrossRefGoogle Scholar
41.Xu, H., Kall, M., Chem. Phys. Chem. 4 (9), 1001 (2003).CrossRefGoogle Scholar
42.Wustholz, K.L., Henry, A.-I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132, 10903 (2010).CrossRefGoogle Scholar
43.Borys, N.J., Lupton, J.M., J. Phys. Chem. C 115, 13645 (2011).CrossRefGoogle Scholar
44.Andersen, P.C., Jacobson, M.L., Rowlen, K.L., J. Phys. Chem. B 108, 2148 (2004).CrossRefGoogle Scholar
45.Geddes, C.D., Parfenov, A., Gryczynski, I., Lakowicz, J.R., J. Phys. Chem. B 107, 9989 (2003).CrossRefGoogle Scholar
46.Cang, H., Labno, A., Lu, C., Yin, X., Liu, M., Gladden, C., Liu, Y., Zhang, X., Nature 469, 385 (2011).CrossRefGoogle Scholar
47.Gordon, M.P., Ha, T., Selvin, P.R., Proc. Natl. Acad. Sci. 101 (17), 6462 (2004).CrossRefGoogle Scholar
48.Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F., Science, 313, 1642 (2006).CrossRefGoogle Scholar
49.Cheezum, M.K., Walker, W.F., Guilford, W.H., Biophys. J. 81 (4), 2378 (2001).CrossRefGoogle Scholar
50.Willets, K.A., Stranahan, S.M., Weber, M.L., J. Phys. Chem. Lett. 3, 1286 (2012).CrossRefGoogle Scholar
51.Nelayah, J., Kociak, M., Stéphan, O., GarcÍa de Abajo, J.J., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Colliex, C., Nat. Phys. 3, 348 (2007).CrossRefGoogle Scholar
52.Rang, M., Jones, A.C., Zhou, F., Li, Z.-Y., Wiley, B.J., Xia, Y., Raschke, M.B., Nano Lett. 8 (10), 3357 (2008).CrossRefGoogle Scholar
53.Alonso-Gonzalez, P., Schnell, M., Sarriugarte, P., Sobhani, H., Wu, C., Arju, N., Khanikaev, A., Golmar, F., Albella, P., Arzubiaga, L., Casanova, F., Hueso, L.E., Nordlander, P., Shvets, G., Hillenbrand, R., Nano Lett. 11 (9), 3922 (2011).CrossRefGoogle Scholar
54.Vesseur, E.J.R., de Waele, R., Kuttge, M., Polman, A., Nano Lett. 7 (9), 2843 (2007).CrossRefGoogle Scholar