Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T02:52:21.017Z Has data issue: false hasContentIssue false

Nanophase Materials Assembled from Atomic Clusters

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The synthesis of nanometer-sized atomic clusters of metals and ceramics by means of the gas-condensation method, followed by their in situ consolidation under high-vacuum conditions, has resulted in a new class of ultrafine-grained interface materials. These nanophase materials, with average grain sizes presently ranging from about 5 to 25 nm, exhibit properties that are often rather different and improved relative to those of conventional materials. In addition, their processing characteristics appear in some cases to be greatly improved over their conventional coarser grained counterparts. The synthesis of nanophase materials by means of cluster assembly under controlled conditions should enable the design of materials, heretofore unavailable, with improved or unique properties. As such, it is likely that the combination of new capabilities to synthesize, characterize, anc) engineer the properties of materials based on the assembly of atomic clusters will significantly impact materials science and engineering in the coming years.

The assembly of matter by the consolidation of gas-condensed atomic clusters is probably as old as the universe itself, since this is thought to be the way condensed matter formed during the cooling period that followed the “big bang,” as evidenced by the structure of the earliest meteorites. The modern synthesis of ultrafine-grained materials by the in situ consolidation of nanometer-sized gas-condensed ultrafine particles or atomic clusters, however, was first suggested by Gleiter.

Type
Interfaces Part II
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., Goddard, W.A. III, Kaldor, A., Louie, S.G., Moskovits, M., Peercy, P.S., Riley, S.J., Siegel, R.W., Spaepen, F., and Wang, Y., J. Mater. Res. 4 (1989) p. 704.CrossRefGoogle Scholar
2.Kear, B.H., Cross, L.E., Keem, J.E., Siegel, R.W., Spaepen, F., Taylor, K.C., Thomas, E.L., and Tu, K.-N., Research Opportunities for Materials with Ultraline Microstructures (National Academy, Washington, DC, 1989), Vol. NMAB-454.Google Scholar
3.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N.et al. (Risø National Laboratory, Roskilde, 1981) p. 15.Google Scholar
4.Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27 (1986) p. 43.Google Scholar
5.Siegel, R.W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific Publishing Co., Singapore, 1987) p. 403.Google Scholar
6.Hahn, H., Eastman, J.A., and Siegel, R.W., in Ceramic Transactions, Ceramic Powder Science, Vol. 1, Part B, edited by Messing, G.L.et al. (American Ceramic Society, Westerville, 1988) p. 1115.Google Scholar
7.Birringer, R. and Gleiter, H., in Encyclopedia of Materials Science and Engineering, Suppl. Vol. 1, edited by Cahn, R.W. (Pergamon Press, Oxford, 1988) p. 339.Google Scholar
8.Eastman, J.A., Liao, Y.X., Narayanasamy, A., and Siegel, R.W., in Processing Science of Advanced Ceramics, edited by Aksay, I.A., McVay, G.L., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989) p. 255.Google Scholar
9.Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2 (1963) p. 702.CrossRefGoogle Scholar
10.Granqvist, C.G. and Buhrman, R.A., J. Appl. Phys. 47 (1976) p. 2200.CrossRefGoogle Scholar
11.Thölén, A.R., Acta Metall. 27 (1979) p. 1765.CrossRefGoogle Scholar
12.Siegel, R.W. and Eastman, J.A. in Multi-component Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989) p. 3.Google Scholar
13.Hahn, H. and Averback, R.S., J. Appl. Phys. 67 (1990) p. 1113.CrossRefGoogle Scholar
14.Iwama, S., Hayakawa, K., and Arizumi, T., J. Cryst. Growth 56 (1982) p. 265.CrossRefGoogle Scholar
15.Matsunawa, A. and Katayama, S., in Laser Welding, Machining and Materials Processing, Proc. ICALEO '85, edited by Albright, C. (IFS Publishing Ltd., 1985).Google Scholar
16.Baba, K., Shohata, N., and Yonezawa, M., Appl. Phys. Lett. 54 (1989) p. 2309.CrossRefGoogle Scholar
17.Siegel, R.W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3 (1988) p. 1367.CrossRefGoogle Scholar
18.Schaefer, H.-E., Würschum, R., Birringer, R., and Gleiter, H., Phys. Rev. B 38 (1988) p. 9545.CrossRefGoogle Scholar
19.Nieman, G.W., Weertman, J.R., and Siegel, R.W., Scripta Metall. 23 (1989) p. 2013; Scripta Metall. 24 (1990) p. 145.CrossRefGoogle Scholar
20.Averback, R.S., Hahn, H., Höfler, H.J., Logas, J.L., and Chen, T.C., in Interfaces Between Polymers, Metals, and Ceramics, edited by Dekoven, B.M., Gellman, A.J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989) p. 3; H. Hahn, J.L. Logas, and R.S. Averback, J. Mater. Res. 5 (1990) p. 609.Google Scholar
21.Thomas, G.J., Siegel, R.W., and Eastman, J.A., in Interfaces Between Polymers, Metals, and Ceramics, edited by DeKoven, B.M., Gellman, A.J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989) p. 13; Scripta Metall. 24 (1990) p. 201.Google Scholar
22.Melendres, C.A., Narayanasamy, A., Maroni, V. A., and Siegel, R.W., J. Mater. Res. 4 (1989) p. 1246; J.C. Parker and R.W. Siegel, J. Mater. Res. 5 (1990) p. 1246.CrossRefGoogle Scholar
23.Epperson, J.E., Siegel, R.W., White, J.W., Klippert, T.E., Narayanasamy, A., Eastman, J.A., and Trouw, F., in Multicomponent Ultra-fine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989) p. 15.Google Scholar
24.Hort, E., Diploma Thesis, Universität des Saarlandes, Saarbrücken (1986).Google Scholar
25.Siegel, R.W., in Superplasticity in Metals, Ceramics and Intermetallics, >edited by Mayo, M.J., Wadsworth, J., Kobayashi, M., and MuKherjee, A.K. (Mater. Res. Soc. Symp. Proc. 196, 1990) p. 59.Google Scholar
26.Li, Z., Ramasamy, S., Hahn, H., and Siegel, R.W., Mater. Lett. 6 (1988) p. 195.CrossRefGoogle Scholar
27.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5 (1990) p. 1073.CrossRefGoogle Scholar
28.Horváth, J., Birringer, R., and Gleiter, H., Solid State Commun. 62 (1987) p. 319; J. Horváth, Defect and Diffusion Forum 66-69 (1989) p. 207.CrossRefGoogle Scholar
29.Hahn, H., Höfler, H., and Averback, R.S., Defect and Diffusion Forum 66-69 (1989) p. 549.Google Scholar
30.Karch, J., Birringer, R., and Gleiter, H., Nature 330 (1987) p. 556.CrossRefGoogle Scholar