Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T15:08:27.133Z Has data issue: false hasContentIssue false

Nanoceramics in Biomedical Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An improved understanding of the interactions at the nanoscale level between the bioceramics in medical implants and the hard or soft tissues in the human body could contribute significantly to the design of new-generation prostheses and postoperative patient management strategies.Overall, the benefits of advanced ceramic materials in biomedical applications have been universally accepted, specifically in terms of their strength, biocompatibility, hydrophilicity, and wear resistance in articulating joints.The continuous development of new-generation implants utilizing nanocoatings with novel nanosensors and devices is leading to better compatibility with human tissue and improved well-being and longevity for patients. This article gives a short overview of bioceramics and reexamines key issues of concern for processing and applying nanoceramics as biomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Doremus, R.H., J. Mater. Sci. 27 (1992) p. 285.CrossRefGoogle Scholar
2The World Orthopaedic Market 2000-2001 (Dorland's Biomedical/Knowledge Enterprises, Philadelphia, 2002).Google Scholar
3Hench, L.L., Ann. N.Y. Acad. Sci. 523 (1988) p. 54.CrossRefGoogle Scholar
4LeGeros, R.Z., Adv. Dent. Res. 2 (1988) p. 164.CrossRefGoogle Scholar
5Kokubo, T., Kushitani, H., Ebisawa, Y., Kitsugi, T., Kotani, S., Ohura, K., and Yamamuro, T., in Bioceramics, Vol. 1, edited by Oonishi, H., Aoki, H., and Sawai, K. (Ishiyaku EuroAmerica, Tokyo, 1989) p. 157.Google Scholar
6deGroot, K., in Ceramics in Clinical Applications, edited by Vincenzini, P. (Elsevier, Amsterdam, 1987) p. 381.Google Scholar
7Oonishi, H., Clarke, I.C., Good, V., Amino, H., Ueno, M., Masuda, S., Oomamiuda, K., Ishimaru, H., Yamamoto, M., and Tsuji, E., in Bioceramics 15, edited by Ben-Nissan, B., Sher, D., and Walsh, W. (Trans Tech Publications, Uetikon-Zurich, 2003) p. 735.Google Scholar
8Ben-Nissan, B., Green, D.D., Kannangara, G.S.K., Chai, C.S., and Milev, A., J. Sol-Gel Sci. Technol. 21 (2001) p. 27.CrossRefGoogle Scholar
9Ben-Nissan, B., Milev, A., Green, D., Conway, R.M., Kannangara, G.S.K., Russell, J., Hu, J., Gillott, E., and Trefry, C., International Patent No. PCT -WO 02/40398 A1 (May 23, 2002).Google Scholar
10Kokubo, T., in Bioceramics 15, edited by Ben-Nissan, B., Sher, D., and Walsh, W. (Trans Tech Publications, Uetikon-Zurich, 2003) p. 523.Google Scholar
11Kokubo, T., Kim, H.-M., Kawashita, M., and Nakamura, T., J. Aust. Ceram. Soc. 36 (1) (2000) p. 37.Google Scholar
12Ehrhardt, G.J. and Day, D.E., Nucl. Med. Biol. 14 (1987) p. 233.Google Scholar
13Ikenaga, M., Ohura, K., Yamamuro, T., Kotoura, Y., Oka, M., and Kokubo, T., J. Orthop. Res. 11 (1993) p. 849.CrossRefGoogle Scholar
14Kawashita, M., Tanaka, M., Kokubo, T., Yao, T., Hamada, S., and Shinjo, T., in Bioceramics 14, edited by Brown, S., Clarke, I., and Williams, P. (Trans Tech Publications, Uetikon-Zurich, 2002) p. 645.Google Scholar
15Yoshikawa, T., Ohmura, T., Sen, Y., Iida, J., Takakura, Y., Nonaka, I., and Ichijama, K., in Bioceramics 15, edited by Ben-Nissan, B., Sher, D., and Walsh, W. (Trans Tech Publications, Uetikon-Zurich, 2003) p. 383.Google Scholar
16Paunesku, T.J., Rajh, T., Wiederrecht, G., Mase, J., Vogt, S., Stojicevic, N., Protic, M., Lai, B., Oryhon, J., Thurnauer, M., and Woloschak, G., Nat. Mater. 2 (5) (2003) p. 343.CrossRefGoogle Scholar