Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T15:09:40.519Z Has data issue: false hasContentIssue false

Multiferroic magnetoelectric nanostructures for novel device applications

Published online by Cambridge University Press:  04 September 2015

Jia-Mian Hu
Affiliation:
The Pennsylvania State University, USA; [email protected]
Tianxiang Nan
Affiliation:
Northeastern University, USA; [email protected]
Nian X. Sun
Affiliation:
Northeastern University, USA; [email protected]
Long-Qing Chen
Affiliation:
The Pennsylvania State University, USA; [email protected]
Get access

Abstract

Multiferroic magnetoelectric nanostructures with coupled magnetization and electric polarization across their interfaces have stimulated intense research activities over the past decade. Such interface-based magnetoelectric coupling can be exploited to significantly improve the performance of many devices such as memories, tunable radio-frequency/microwave devices, and magnetic sensors. In this article, we introduce a number of current or developing technologies and discuss their limitations. We describe how the use of magnetoelectric nanostructures can overcome these limitations to optimize device performance. We also present challenges that need to be addressed in pursuing practical applications of magnetoelectric devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, P., Tarascon, J.-M., Nat. Mater. 11, 560 (2012).CrossRefGoogle Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., Tokura, Y., Nat. Mater. 11, 103 (2012).Google Scholar
Ma, J., Hu, J., Li, Z., Nan, C.-W., Adv. Mater. 23, 1062 (2011).CrossRefGoogle Scholar
Vaz, C.A.F., J. Phys. Condens. Matter 24, 333201 (2012).Google Scholar
Sun, N.X., Srinivasan, G., Spin 2, 1240004 (2012).CrossRefGoogle Scholar
Fusil, S., Garcia, V., Barthélémy, A., Bibes, M., Annu. Rev. Mater. Res. 44, 91 (2014).CrossRefGoogle Scholar
Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D., Nat. Mater. 6, 348 (2007).CrossRefGoogle Scholar
Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P.L., Hao, D., Ramesh, R., Nano Lett. 7, 1586 (2007).Google Scholar
Thiele, C., Dörr, K., Bilani, O., Rödel, J., Schultz, L., Phys. Rev. B Condens. Matter 75, 054408 (2007).CrossRefGoogle Scholar
Hu, J.-M., Nan, C.W., Phys. Rev. B Condens. Matter 80, 224416 (2009).CrossRefGoogle Scholar
Geprägs, S., Brandlmaier, A., Opel, M., Gross, R., Goennenwein, S.T.B., Appl. Phys. Lett. 96, 142509 (2010).CrossRefGoogle Scholar
Lahtinen, T.H.E., Franke, K.J.A., van Dijken, S., Sci. Rep. 2, 258 (2012).CrossRefGoogle Scholar
Chu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodriguez, A., Scholl, A., Wang, S.X., Ramesh, R., Nat. Mater. 7, 478 (2008).Google Scholar
Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., Dynes, R.C., Nat. Mater. 9, 756 (2010).CrossRefGoogle Scholar
Skumryev, V., Laukhin, V., Fina, I., Martí, X., Sánchez, F., Gospodinov, M., Fontcuberta, J., Phys. Rev. Lett. 106, 057206 (2011).Google Scholar
Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., Ramesh, R., Phys. Rev. Lett. 107, 217202 (2011).CrossRefGoogle Scholar
Wu, S.M., Cybart, S.A., Yi, D., Parker, J.M., Ramesh, R., Dynes, R.C., Phys. Rev. Lett. 110, 067202 (2013).Google Scholar
Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., Ralph, D.C., Schlom, D.G., Iniguez, J., Huey, B.D., Ramesh, R., Nature 516, 370 (2014).Google Scholar
Richter, H.J., J. Phys. D Appl. Phys. 40, R149 (2007).CrossRefGoogle Scholar
Hitachi, Ltd., “Hitachi Achieves Nanotechnology Milestone for Quadrupling Terabyte Hard Drive,” available at http://www.hitachi.com/New/cnews/071015a.html. News release. October 17, 2007 (accessed July 2015).Google Scholar
Zhou, Y., Liu, K., Zhang, K., Schreck, E., “Electric Field Assisted Magnetic Recording,” US Patent 8,023,218 B2 (September 20, 2011).Google Scholar
Zhou, T., Leong, S.H., Yuan, Z.M., Hu, S.B., Ong, C.L., Liu, B., Appl. Phys. Lett. 96, 012506 (2010).Google Scholar
Wang, J., Ma, J., Li, Z., Shen, Y., Lin, Y., Nan, C.W., J. Appl. Phys. 110, 043919 (2011).Google Scholar
Tsai, W.-C., Liao, S.-C., Huang, K.-F., Wang, D.-S., Lai, C.-H., Appl. Phys. Lett. 103, 252405 (2013).Google Scholar
Thiele, J.-U., Maat, S., Fullerton, E.E., Appl. Phys. Lett. 82, 2859 (2003).Google Scholar
Yu, G., Wang, Z., Abolfath-Beygi, M., He, C., Li, X., Wong, K.L., Nordeen, P., Wu, H., Carman, G.P., Han, X., Alhomoudi, I.A., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 106, 072402 (2015).Google Scholar
Rottmayer, R.E., Batra, S., Buechel, D., Challener, W.A., Hohlfeld, J., Kubota, Y., Li, L., Bin, L., Mihalcea, C., Mountfield, K., Pelhos, K., Peng, C., Rausch, T., Seigler, M.A., Weller, D., Yang, X., IEEE Trans. Magn. 42, 2417 (2006).CrossRefGoogle Scholar
Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ganping, J., Hsia, Y.-T., Erden, M.F., Proc. IEEE 96, 1810 (2008).CrossRefGoogle Scholar
Hu, J.-M., Yang, T.N., Chen, L.Q., Nan, C.W., J. Appl. Phys. 113, 194301 (2013).Google Scholar
Hu, J.-M., Yang, T., Wang, J., Huang, H., Zhang, J., Chen, L.-Q., Nan, C.-W., Nano Lett. 15, 616 (2015).Google Scholar
Åkerman, J., Science 308, 508 (2005).Google Scholar
Zhu, J.G., Proc. IEEE 96, 1786 (2008).Google Scholar
Slonczewski, J.C., J. Magn. Magn. Mater. 159, L1 (1996).CrossRefGoogle Scholar
Berger, L., Phys. Rev. B Condens. Matter 54, 9353 (1996).Google Scholar
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B Condens. Matter 39, 4828 (1989).Google Scholar
Julliere, M., Phys. Lett. A 54, 225 (1975).Google Scholar
Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).Google Scholar
Brataas, A., Kent, A.D., Ohno, H., Nat. Mater. 11, 372 (2012).Google Scholar
Khvalkovskiy, A., Zvezdin, K., Gorbunov, Y., Cros, V., Grollier, J., Fert, A., Zvezdin, A., Phys. Rev. Lett. 102, 067206 (2009).Google Scholar
Chanthbouala, A., Matsumoto, R., Grollier, J., Cros, V., Anane, A., Fert, A., Khvalkovskiy, A.V., Zvezdin, K.A., Nishimura, K., Nagamine, Y., Maehara, H., Tsunekawa, K., Fukushima, A., Yuasa, S., Nat. Phys. 7, 626 (2011).CrossRefGoogle Scholar
Metaxas, P.J., Sampaio, J., Chanthbouala, A., Matsumoto, R., Anane, A., Fert, A., Zvezdin, K.A., Yakushiji, K., Kubota, H., Fukushima, A., Yuasa, S., Nishimura, K., Nagamine, Y., Maehara, H., Tsunekawa, K., Cros, V., Grollier, J., Sci. Rep. 3, 1829 (2013).CrossRefGoogle Scholar
Wang, W.-G., Li, M., Hageman, S., Chien, C.L., Nat. Mater. 11, 64 (2012).CrossRefGoogle Scholar
Wang, K.L., Alzate, J.G., Amiri, P.K., J. Phys. D Appl. Phys. 46, 074003 (2013).CrossRefGoogle Scholar
Hu, J.-M., Li, Z., Chen, L.-Q., Nan, C.-W., Nat. Commun. 2, 553 (2011).Google Scholar
Wu, T., Bur, A., Zhao, P., Mohanchandra, K.P., Wong, K., Wang, K.L., Lynch, C.S., Carman, G.P., Appl. Phys. Lett. 98, 012504 (2011).Google Scholar
Ohno, H., Nat. Mater. 9, 952 (2010).CrossRefGoogle Scholar
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).CrossRefGoogle Scholar
Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., Nan, C.W., Sci. Rep. 4, 7507 (2014).Google Scholar
Peng, R.-C., Wang, J.J., Hu, J.-M., Chen, L.-Q., Nan, C.-W., Appl. Phys. Lett. 106, 142901 (2015).Google Scholar
Roy, K., Bandyopadhyay, S., Atulasimha, J., Sci. Rep. 3, 3038 (2013).Google Scholar
Scott, J.F., Nat. Mater. 6, 256 (2007).Google Scholar
Velev, J.P., Duan, C.G., Burton, J.D., Smogunov, A., Niranjan, M.K., Tosatti, E., Jaswal, S.S., Tsymbal, E.Y., Nano Lett. 9, 427 (2009).CrossRefGoogle Scholar
Zhang, S., Phys. Rev. Lett. 83, 640 (1999).Google Scholar
Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A., Science 327, 1106 (2010).Google Scholar
Valencia, S., Crassous, A., Bocher, L., Garcia, V., Moya, X., Cherifi, R.O., Deranlot, C., Bouzehouane, K., Fusil, S., Zobelli, A., Gloter, A., Mathur, N.D., Gaupp, A., Abrudan, R., Radu, F., Barthélémy, A., Bibes, M., Nat. Mater. 10, 753 (2011).Google Scholar
Pantel, D., Goetze, S., Hesse, D., Alexe, M., Nat. Mater. 11, 289 (2012).Google Scholar
Burton, J. D., Tsymbal, E.Y., Phys. Rev. B Condens. Matter 80, 174406 (2009).Google Scholar
Burton, J.D., Tsymbal, E.Y., Phys. Rev. Lett. 106, 157203 (2011).Google Scholar
Yin, Y.W., Burton, J.D., Kim, Y.M., Borisevich, A.Y., Pennycook, S.J., Yang, S.M., Noh, T.W., Gruverman, A., Li, X.G., Tsymbal, E.Y., Li, Q., Nat. Mater. 12, 397 (2013).Google Scholar
Tsymbal, E.Y., Gruverman, A., Garcia, V., Bibes, M., Barthélémy, A., MRS Bull. 37, 138 (2012).Google Scholar
Garcia, V., Bibes, M., Nat. Commun. 5, 4289 (2014).Google Scholar
Yin, Y.W., Raju, M., Hu, W.J., Burton, J.D., Kim, Y.-M., Borisevich, A.Y., Pennycook, S.J., Yang, S.M., Noh, T.W., Gruverman, A., Li, X.G., Zhang, Z.D., Tsymbal, E.Y., Li, Q., J. Appl. Phys. 117, 172601 (2015).Google Scholar
Srinivasan, G., Annu. Rev. Mater. Res. 40, 153 (2010).Google Scholar
Liu, M., Sun, N.X., Philos. Trans. R. Soc. Lond. A 372, 20120439 (2014).Google Scholar
Liu, M., Howe, B.M., Grazulis, L., Mahalingam, K., Nan, T., Sun, N.X., Brown, G.J., Adv. Mater. 25, 4886 (2013).Google Scholar
Lou, J., Liu, M., Reed, D., Ren, Y.H., Sun, N.X., Adv. Mater. 21, 4711 (2009).Google Scholar
Das, J., Song, Y.-Y., Mo, N., Krivosik, P., Patton, C.E., Adv. Mater. 21, 2045 (2009).Google Scholar
Ustinov, A.B., Tiberkevich, V.S., Srinivasan, G., Slavin, A.N., Semenov, A.A., Karmanenko, S.F., Kalinikos, B.A., Mantese, J.V., Ramer, R., J. Appl. Phys. 100, 093905 (2006).Google Scholar
Nakaya, Y., Mori, H., Clin. Phys. Physiol. Meas. 13, 191 (1992).Google Scholar
Wikswo, J.P. Jr., IEEE Trans. Appl. Supercond. 5, 74 (1995).Google Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., Viehland, D., Appl. Phys. Lett. 88, 062510 (2006).Google Scholar
Israel, C., Mathur, N.D., Scott, J.F., Nat. Mater. 7, 93 (2008).CrossRefGoogle Scholar
Ye, J.-X., Ma, J.-N., Ma, J., Hu, J.-M., Li, Z., Feng, M., Zhang, Q.M., Nan, C.W., J. Appl. Phys. 116, 074103 (2014).Google Scholar
Nan, C.-W., Liu, G., Lin, Y., Chen, H., Phys. Rev. Lett. 94, 197203 (2005).Google Scholar
Li, Z., Wang, Y., Lin, Y.H., Nan, C.W., Phys. Rev. B Condens. Matter 79, 180406 (2009).Google Scholar
Wang, J., Li, Z., Wang, J., He, H., Nan, C.-W., J. Appl. Phys. 117, 044101 (2015).Google Scholar
Bichurin, M.I., Filippov, D.A., Petrov, V.M., Laletsin, V.M., Paddubnaya, N., Srinivasan, G., Phys. Rev. B Condens. Matter 68, 132408 (2003).CrossRefGoogle Scholar
Greve, H., Woltermann, E., Quenzer, H.-J., Wagner, B., Quandt, E., Appl. Phys. Lett. 96, 182501 (2010).Google Scholar
Edelstein, A.S., Fischer, G.A., J. Appl. Phys. 91, 7795 (2002).Google Scholar
Stutzke, N.A., Russek, S.E., Pappas, D.P., Tondra, M., J. Appl. Phys. 97, 10Q107 (2005).CrossRefGoogle Scholar
Wang, Y., Hu, J., Lin, Y., Nan, C.-W., NPG Asia Mater. 2, 61 (2010).Google Scholar
Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knochel, R., Quandt, E., Meyners, D., Nat. Mater. 11, 523 (2012).Google Scholar
Lage, E., Urs, N.O., Röbisch, V., Teliban, I., Knöchel, R., Meyners, D., McCord, J., Quandt, E., Appl. Phys. Lett. 104, 132405 (2014).Google Scholar
Nan, T., Hui, Y., Rinaldi, M., Sun, N.X., Sci. Rep. 3, 1985 (2013).CrossRefGoogle Scholar
Ludwig, A., Quandt, E., IEEE Trans. Magn. 38, 2829 (2002).CrossRefGoogle Scholar
Jedrecy, N., von Bardeleben, H.J., Badjeck, V., Demaille, D., Stanescu, D., Magnan, H., Barbier, A., Phys. Rev. B Condens. Matter 88, 121409 (2013).Google Scholar
Jia, C.L., Wei, T.L., Jiang, C.J., Xue, D.S., Sukhov, A., Berakdar, J., Phys. Rev. B Condens. Matter 90, 054423 (2014).Google Scholar
Leistner, K., Wunderwald, J., Lange, N., Oswald, S., Richter, M., Zhang, H., Schultz, L., Fähler, S., Phys. Rev. B Condens. Matter 87, 224411 (2013).CrossRefGoogle Scholar
Bauer, U., Yao, L., Tan, A.J., Agrawal, P., Emori, S., Tuller, H.L., van Dijken, S., Beach, G.S.D., Nat. Mater. 14, 174 (2015).Google Scholar
Bi, C., Liu, Y., Newhouse-Illige, T., Xu, M., Rosales, M., Freeland, J.W., Mryasov, O., Zhang, S., te Velthuis, S.G.E., Wang, W.G., Phys. Rev. Lett. 113, 267202 (2014).Google Scholar
Nan, T., Zhou, Z., Liu, M., Yang, X., Gao, Y., Assaf, B.A., Lin, H., Velu, S., Wang, X., Luo, H., Chen, J., Akhtar, S., Hu, E., Rajiv, R., Krishnan, K., Sreedhar, S., Heiman, D., Howe, B.M., Brown, G.J., Sun, N.X., Sci. Rep. 4, 3688 (2014).Google Scholar
Zhou, Z., Howe, B.M., Liu, M., Nan, T., Chen, X., Mahalingam, K., Sun, N.X., Brown, G.J., Sci. Rep. 5, 7740 (2015).CrossRefGoogle Scholar
Gallop, J., Supercond. Sci. Technol. 16, 1575 (2003).Google Scholar
Fagaly, R.L., Rev. Sci. Instrum. 77, 101101 (2006).Google Scholar
Lu, M.-C., Mei, L., Jeong, D.-Y., Xiang, J., Xie, H., Zhang, Q.M., Appl. Phys. Lett. 106, 112905 (2015).Google Scholar
Wang, Y.J., Gao, J.Q., Li, M.H., Shen, Y., Hasanyan, D., Li, J.F., Viehland, D., Philos. Trans. R. Soc. Lond. A 372, 20120455 (2014).Google Scholar