Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-15T11:14:00.078Z Has data issue: false hasContentIssue false

Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters

Published online by Cambridge University Press:  09 August 2013

Jesse V. Jokerst
Affiliation:
Molecular Imaging Program, Stanford University;[email protected]
Christoph Pohling
Affiliation:
Molecular Imaging Program, Stanford University;[email protected]
Sanjiv S. Gambhir
Affiliation:
Molecular Imaging Program, Stanford University;[email protected]
Get access

Abstract

Molecular imaging scans cellular and molecular targets in living subjects through the introduction of imaging agents that bind to these targets and report their presence through a measurable signal. The picomolar sensitivity, signal stability, and high multiplexing capacity of Raman spectroscopy satisfies important needs within the field of molecular imaging, and several groups now utilize Raman and surface-enhanced Raman spectroscopy to image molecular targets in small animal models of human disease. This article details the role of Raman spectroscopy in molecular imaging, describes some substrates and imaging agents used in animal models, and illustrates some examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

James, M.L., Gambhir, S.S., Physiol. Rev. 92, 897 (2012).CrossRefGoogle Scholar
Weissleder, R., Pittet, M.J., Nature 452, 580 (2008).CrossRefGoogle Scholar
Jokerst, J.V., Raamanathan, A., Christodoulides, N., Floriano, P.N., Pollard, A.A., Simmons, G.W., Wong, J., Gage, C., Furmaga, W.B., Redding, S.W., Biosens. Bioelectron. 24, 3622 (2009).CrossRefGoogle Scholar
Zavaleta, C.L., Kircher, M.F., Gambhir, S.S., J. Nucl. Med. 52, 1839 (2011).CrossRefGoogle Scholar
Shim, M.G., Wong Kee Song, L.M., Marcon, N.E., Wilson, B.C., Photochem. Photobiol. 72, 146 (2000).Google Scholar
Schmidt, C., Trentelman, K., Preserv. Sci. 6, 10 (2009).Google Scholar
Jeanmaire, D.L., Van Duyne, R.P., J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).CrossRefGoogle Scholar
Fleischmann, M., Hendra, P., McQuillan, A., Chem. Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
Van de Sompel, D., Garai, E., Zavaleta, C., Gambhir, S.S., PLOS One 7, e38850 (2012).CrossRefGoogle Scholar
Zavaleta, C.L., Smith, B.R., Walton, I., Doering, W., Davis, G., Shojael, B., Natan, M.J., Gambhir, S.S., Proc. Natl. Acad. Sci. U.S.A. 106, 13511 (2009).CrossRefGoogle Scholar
Keren, S., Zavaleta, C., Cheng, Z., de la Zerda, A., Gheysens, O., Gambhir, S.S., Proc. Natl. Acad. Sci. U.S.A. 105, 5844 (2008).CrossRefGoogle Scholar
Willets, K.A., Anal. Bioanal. Chem. 394, 85 (2009).CrossRefGoogle Scholar
Kneipp, J., Kneipp, H., McLaughlin, M., Brown, D., Kneipp, K., Nano Lett. 6, 2225 (2006).CrossRefGoogle Scholar
Vo-Dinh, T., Yan, F., Wabuyele, M.B., J. Raman Spectrosc. 36, 640 (2005).CrossRefGoogle Scholar
von Maltzahn, G, Centrone, A., Park, J.H., Ramanathan, R., Sailor, M.J., Hatton, T.A., Bhatia, S.N., Adv. Mater. 21, 3175 (2009).CrossRefGoogle Scholar
Jokerst, J.V., Cole, A.J., Van de Sompel, D., Gambhir, S.S., ACS Nano 6, 10366 (2012).CrossRefGoogle Scholar
Xie, J., Zhang, Q., Lee, J.Y., Wang, D.I.C., ACS Nano 2, 2473 (2008).CrossRefGoogle Scholar
Wi, J.S., Barnard, E.S., Wilson, R.J., Zhang, M., Tang, M.X., Brongersma, M.L., Wang, S.X., ACS Nano 5, 6449 (2011).CrossRefGoogle Scholar
Khoury, C.G., Vo-Dinh, T., J. Phys. Chem. C 112, 18849 (2008).CrossRefGoogle Scholar
Orendorff, C.J., Gearheart, L., Jana, N.R., Murphy, C.J., Phys. Chem. Chem. Phys. 8, 165 (2006).CrossRefGoogle Scholar
Stranahan, S.M., Titus, E.J., Willets, K.A., ACS Nano 6, 1806 (2012).CrossRefGoogle Scholar
Kircher, M.F., de la Zerda, A., Jokerst, J.V., Zavaleta, C.L., Kempen, P.J., Mittra, E., Pitter, K., Huang, R., Campos, C., Habte, F., Nat. Med. 18, 829 (2012).CrossRefGoogle Scholar
Jokerst, J.V., Thangaraj, M., Kempen, P.J., Sinclair, R., Gambhir, S.S., ACS Nano 6, 5920 (2012).CrossRefGoogle Scholar
Mulvaney, S.P., Musick, M.D., Keating, C.D., Natan, M.J., Langmuir 19, 4784 (2003).CrossRefGoogle Scholar
Chen, Y.S., Frey, W., Kim, S., Kruizinga, P., Homan, K., Emelianov, S., Nano Lett. 11, 348 (2011).CrossRefGoogle Scholar
Chen, Y.S., Frey, W., Kim, S., Homan, K., Kruizinga, P., Sokolov, K., Emelianov, S., Opt. Express 18, 8867 (2010).CrossRefGoogle Scholar
Zavaleta, C., De La Zerda, A., Liu, Z., Keren, S., Cheng, Z., Schipper, M., Chen, X., Dai, H., Gambhir, S., Nano Lett. 8, 2800 (2008).CrossRefGoogle Scholar
Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H., Proc. Natl. Acad. Sci. USA 105, 1410 (2008).CrossRefGoogle Scholar
Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A., Physics Reports 409, 2 (2005).CrossRefGoogle Scholar
Liu, Z., Li, X., Tabakman, S.M., Jiang, K., Fan, S., Dai, H., J. Am. Chem. Soc. 130, 13540 (2008).CrossRefGoogle Scholar
Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Toxicol. Sci. 77, 126 (2004).CrossRefGoogle Scholar
Kostarelos, K., Bianco, A., Prato, M., Nat. Nanotechnol. 4, 627 (2009).CrossRefGoogle Scholar
Schipper, M.L., Nakayama-Ratchford, N., Davis, C.R., Kam, N.W.S., Chu, P., Liu, Z., Sun, X., Dai, H., Gambhir, S.S., Nat. Nanotechnol. 3, 216 (2008).CrossRefGoogle Scholar
Gambhir, S., “Molecular Imaging of Living Subjects Using Raman Spectroscopy and Labeled Raman Nanoparticles,” US Patent 20100166650 (May 4, 2007).Google Scholar
Qian, X., Peng, X.H., Ansari, D.O., Yin-Goen, Q., Chen, G.Z., Shin, D.M., Yang, L., Young, A.N., Wang, M.D., Nie, S., Nat. Biotechnol. 26, 83 (2008).CrossRefGoogle Scholar
Wang, Y., Seebald, J.L., Szeto, D.P., Irudayaraj, J., Willets, K.A., ACS Nano 4, 4039 (2010).CrossRefGoogle Scholar
Jokerst, J.V., Miao, Z., Zavaleta, C., Cheng, Z., Gambhir, S.S., Small 7, 625 (2011).CrossRefGoogle Scholar
Stone, N., Kerssens, M., Lloyd, G.R., Faulds, K., Graham, D., Matousek, P., Chem. Sci. 2, 776 (2011).CrossRefGoogle Scholar
Mohs, A.M., Mancini, M.C., Singhal, S., Provenzale, J.M., Leyland-Jones, B., Wang, M.D., Nie, S., Anal. Chem. 82 (21), 9058 (2010).CrossRefGoogle Scholar
Bowden, M., Gardiner, D.J., Rice, G., Gerrard, D.L., J. Raman Spectrosc. 21, 37 (2005).CrossRefGoogle Scholar
Schulmerich, M.V., Cole, J.H., Dooley, K.A., Morris, M.D., Kreider, J.M., Goldstein, S.A., Srinivasan, S., Pogue, B.W., J. Biomed. Opt. 13, 020506 (2008).CrossRefGoogle Scholar
Stöckle, R.M., Suh, Y.D., Deckert, V., Zenobi, R., Chem. Phys. Lett. 318, 131 (2000).CrossRefGoogle Scholar
Hayazawa, N., Saito, Y., Kawata, S., Appl. Phys. Lett. 85, 6239 (2004).CrossRefGoogle Scholar
Demming, A., Festy, F., Richards, D., J. Chem. Phys. 122, 184716 (2005).CrossRefGoogle Scholar
Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
Camden, J.P., Dieringer, J.A., Wang, Y., Masiello, D.J., Marks, L.D., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 130, 12616 (2008).CrossRefGoogle Scholar
Steidtner, J., Pettinger, B., Phys. Rev. Lett. 100, 236101 (2008).CrossRefGoogle Scholar
Budich, C., Neugebauer, U., Popp, J., Deckert, V., J. Microsc. 229, 533 (2008).CrossRefGoogle Scholar
Rasmussen, A., Deckert, V., J. Raman Spectrosc. 37, 311 (2006).CrossRefGoogle Scholar
Yeo, B.S., Maedler, S., Schmid, T., Zhang, W., Zenobi, R., J. Phys. Chem. C 112, 4867 (2008).CrossRefGoogle Scholar
Bailo, E., Deckert, V., Angew. Chem. Int. Ed. 47, 1658 (2008).CrossRefGoogle Scholar
El-Diasty, F., Vib. Spectrosc. 55, 1 (2011).CrossRefGoogle Scholar
Rahav, S., Mukamel, S., Proc. Natl. Acad. Sci. USA 107, 4825 (2010).CrossRefGoogle Scholar
Shen, Y., Bloembergen, N., Phys. Rev. 137, A1787 (1965).CrossRefGoogle Scholar
Maker, P., Terhune, R., Phys. Rev. 137, A801 (1965).CrossRefGoogle Scholar
Volkmer, A., J. Phys. D: Appl. Phys. 38, R59 (2005).CrossRefGoogle Scholar
Pohling, C., Buckup, T., Pagenstecher, A., Motzkus, M., Biomed. Opt. Express 2, 2110 (2011).CrossRefGoogle Scholar
Lotem, H., Lynch, R. Jr., Bloembergen, N., Phys. Rev. A 14, 1748 (1976).CrossRefGoogle Scholar
Cheng, J.X., Volkmer, A., Xie, X.S., J. Opt. Soc. Am. B: Opt. Phys. 19, 1363 (2002).CrossRefGoogle Scholar
Volkmer, A., Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields (Springer-Verlag, Berlin, 2010), p. 111.CrossRefGoogle Scholar
Freudiger, C.W., Min, W., Saar, B.G., Lu, S., Holtom, G.R., He, C., Tsai, J.C., Kang, J.X., Xie, X.S., Science 322, 1857 (2008).CrossRefGoogle Scholar
Saar, B.G., Freudiger, C.W., Reichman, J., Stanley, C.M., Holtom, G.R., Xie, X.S., Science 330, 1368 (2010).CrossRefGoogle Scholar
Chew, H, Wang, D.S., Kerker, M., J. Opt. Soc. Am. B 1, 1 (1984).CrossRefGoogle Scholar
Steuwea, C., Kaminski, C.F., Baumberg, J.J., Mahajana, S., “Molecular Imaging with Surface-Enhanced CARS on Nanostructures” in Proc. SPIE 8234, Vo-Dinh, T., Lakowicz, J.R., Eds. (SPIE, San Francisco, CA, 2012).Google Scholar
Furusawa, K., Hayazawa, N., Catalan, F.C., Okamoto, T., Kawata, S., J. Raman Spectrosc. 43, 5 (2012).CrossRefGoogle Scholar
Thakor, A.S., Paulmurugan, R., Kempen, P., Zavaleta, C., Sinclair, R., Massoud, T.F., Gambhir, S.S., Small 7, 126 (2011).CrossRefGoogle Scholar
Thakor, A.S., Luong, R., Paulmurugan, R., Lin, F.I., Kempen, P., Zavaleta, C., Chu, P., Massoud, T.F., Sinclair, R., Gambhir, S.S., Sci. Transl. Med. 3, 79ra33 (2011).CrossRefGoogle Scholar
Nguyen, Q.T., Olson, E.S., Aguilera, T.A., Jiang, T., Scadeng, M., Ellies, L.G., Tsien, R.Y., Proc. Natl. Acad. Sci. USA 107, 4317 (2010).CrossRefGoogle Scholar
Levi, J., Kothapalli, S.R., Ma, T.J., Hartman, K., Khuri-Yakub, B.T., Gambhir, S.S., J. Am. Chem. Soc. 132, 11264 (2010).CrossRefGoogle Scholar
Zhang, G., Proc. Natl. Acad. Sci. USA 102(45), 16141 (2005).CrossRefGoogle Scholar