Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T03:14:13.528Z Has data issue: false hasContentIssue false

Modeling Diffusion in Gallium Arsenide: Recent Work

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Second to silicon (Si), the most highly developed technology for semiconductor processing exists for gallium arsenide (GaAs). Unfortunately, GaAs processing is more complex than that of Si, mainly because GaAs is a compound semiconductor. Additionally, the lack of a stable native GaAS oxide and other disadvantages relative to Si have prevented this material from expanding beyond the small niche of applications where its high intrinsic electron mobility, superior radiation hardness, and direct bandgap are essential. Adequate understanding and modeling of the process physics are important for extending the “process window” available to GaAs manufacturers and for increasing the appeal of this material. This article deals with one of the most important process events: dopant diffusion.

In the next section we briefly describe device-fabrication technology and show the importance of diffusion modeling in the prediction of device characteristics. We then review some elementary diffusion mechanisms and outline the dopants that are important in GaAs-processing technology as well as the methods by which these dopants are introduced into the substrate. In subsequent sections we review the research community's current understanding of diffusion mechanisms as well as model parameters for specific dopants. Much work has been done in this field, at Stanford and by other groups, since the publication of a major review of the subject by Tan et al. in 1991. In this article, we focus on these recent contributions.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ghandhi, S.K., VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd. ed. (John Wiley & Sons, New York, 1994).Google Scholar
2.Howes, M.J. and Morgan, D.V., eds., Gallium Arsenide: Materials, Devices, and Circuits (John Wiley & Sons, Chichester, 1985).Google Scholar
3.Magerlein, J.H., Webb, D.J., Callegari, A., Feder, J.D., Fryxell, T., Guthrie, H.C., Hoh, P.D., Mitchell, J.W., Pomerene, A.T.S., Scontras, S., and Greiner, J.H., J. Appl. Phys. 61 (1987) p. 3080.CrossRefGoogle Scholar
4.Muller, R.S. and Kamins, T.I., Device Electronics for Integrated Circuits, 2nd. ed. (John Wiley & Sons, New York, 1986).Google Scholar
5.Reed-Hill, R.E., Physical Metallurgy Principles, 2nd. ed. (PWS Engineering, Boston, 1973).Google Scholar
6.Schmalzried, H., Solid State Reactions, 2nd. ed. (Verlag Chemie, Weinheim, 1981).Google Scholar
7.Borg, R.J. and Dienes, G.J., An Introduction to Solid State Diffusion (Academic Press, Boston, 1988).Google Scholar
8.Gösele, U.M., Ann. Rev. Mater. Sci. 18 (1988) p. 257.CrossRefGoogle Scholar
9.Fahey, P.M., Griffin, P.B., and Plummer, J.D., Reviews of Modern Physics 61 (1989) p. 289.CrossRefGoogle Scholar
10.Kröger, F.A., The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).CrossRefGoogle Scholar
11.LeClaire, A.D., in Solid State, edited by Jost, W. (Academic Press, New York, 1970) p. 780.Google Scholar
12.Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era: Process Technology (Lattice Press, Sunset Beach, 1986).Google Scholar
13.Giles, M.D., in VLSI Technology, 2nd. ed., edited by Sze, S.M. (McGraw-Hill Book Company, New York, 1988).Google Scholar
14.Murray, J.J., PhD Thesis, Stanford University, 1992.Google Scholar
15.Allen, E.L., PhD Thesis, Stanford University, 1991.Google Scholar
16.Robinson, H.G., PhD Thesis, Stanford University, 1992.Google Scholar
17.Rao, M.V., Nucl. Instrum. and Methods Phys. Res. B79 (1993) p. 645.CrossRefGoogle Scholar
18.Mrowec, S., Defects and Diffusion in Solids: An Introduction (Elsevier/North-Holland, New York, 1980).Google Scholar
19.Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 70 (1991) p. 4827.CrossRefGoogle Scholar
20.deGroot, S.R., Thermodynamics and Irreversible Processes (North-Holland, Amsterdam, 1951).Google Scholar
21.Gösele, U., Frank, W., and Seeger, A., Appl. Phys. 23 (1980) p. 361.CrossRefGoogle Scholar
22.Frank, F.C. and Turnbull, D., Phys. Rev. 104 (1956) p. 617.CrossRefGoogle Scholar
23.Longini, R.L., Solid State Electron. 5 (1962) p. 127.CrossRefGoogle Scholar
24.Deppe, D.G., Holonyak, J.N., Kish, F.A., and Baker, J.E., Appl. Phys. Lett. 50 (1987) p. 998.CrossRefGoogle Scholar
25.Deppe, D.G., Holonyak, J.N., and Baker, J.E., Appl Phys. Lett. 52 (1988) p. 129.CrossRefGoogle Scholar
26.Wagner, C., J. Chem. Phys. 18 (1950) p. 62.CrossRefGoogle Scholar
27.Vieland, L.J., J. Phys. Chem. Solids 21 (1961) p. 318.CrossRefGoogle Scholar
28.Anteil, G.R., Solid State Electron. 8 (1965) p. 943.CrossRefGoogle Scholar
29.Shockley, W. and Moll, J.L., Phys. Rev. 119 (1960) p. 1480.CrossRefGoogle Scholar
30.Shockley, W. and Last, J.T., Phys. Rev. 107 (1957) p. 392.CrossRefGoogle Scholar
31.Tan, T.Y., Gösele, U., and Yu, S., Critical Rev. in Solid State and Mater. Sci. 17 (1991) p. 47.CrossRefGoogle Scholar
32.Corbel, C., Nucl. Instrum. & Methods in Phys. Res. B63 (1992) p. 166.CrossRefGoogle Scholar
33.Lee, J-L., Wei, W., Tanigawa, S., and Kawabe, M., J. Appl. Phys. 70 (1991) p. 674.CrossRefGoogle Scholar
34.Rouviere, J-L., Kim, Y., Cunningham, J., Rentschler, J.A., Bourret, A., and Ourmazd, A., Phys. Rev. Lett. 68 (1992) p. 2798.CrossRefGoogle Scholar
35.Jansen, R.W. and Sankey, O.F., Phys. Rev. B 39 (1989) p. 3192.CrossRefGoogle Scholar
36.Baraff, G.A. and Schluter, M., Phys. Rev. Lett. 55 (1985) p. 1327.CrossRefGoogle Scholar
37.Lee, C.C., PhD Thesis, Stanford University, 1994.Google Scholar
38.Robinson, H.G., Deal, M.D., Amaratunga, G., Griffin, P.B., Stevenson, D.A., and Plummer, J.D., J. Appl. Phys. 71 (1992) p. 2615.CrossRefGoogle Scholar
39.Matsushita, S., Terada, S., Fujii, E., and Harada, Y., Appl. Phys. Lett. 63 (1993) p. 225.CrossRefGoogle Scholar
40.Kavanagh, K.L., Magee, C.W., Sheets, J., and Mayer, J.W., J. Appl. Phys. 64 (1988) p. 1845.CrossRefGoogle Scholar
41.Greiner, M.E. and Gibbons, J.F., J. Appl. Phys. 57 (1985) p. 5181.CrossRefGoogle Scholar
42.Yu, S., Gösele, U.M., and Tan, T.Y., J. Appl. Phys. 66 (1989) p. 2952.CrossRefGoogle Scholar
43.Kung, J.K. and Spitzer, W.G., J. Appl. Phys. 45 (1974) p. 4477.CrossRefGoogle Scholar
44.Banwell, T.C., Maenpaa, M., Nicolet, M-A., and Tandon, J.L., J. Phys. Chem. Solids 44 (1983) p. 507.CrossRefGoogle Scholar
45.Walukiewicz, W., in Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D.J., Bernholc, J., and Haller, E.E. (Mater. Res. Soc. Proc. 163, Pittsburgh, PA, 1990) p. 845.Google Scholar
46.Allen, E.L., Murray, J.J., Deal, M.D., Plummer, J.D., Jones, K.S., and Rubart, W.S., J. Electrochem. Soc. 138 (1991) p. 3440.CrossRefGoogle Scholar
47.Deal, M.D., Hansen, S.E., and Sigmon, T.W., IEEE Trans. CAD 8 (1989) p. 939.CrossRefGoogle Scholar
48.Kasahara, J. and Watanabe, N., in Semi-Insulating III-V Materials, edited by Makram-Ebeid, Sherif and Tuck, Brian (Shiva Publishing Limited, Evian, 1982) p. 238.Google Scholar
49.Kasahara, J., Kato, Y., Arai, M., and Watanabe, N., J. Electrochem. Soc. 130 (1983) p. 2275.CrossRefGoogle Scholar
50.Onuma, T., Hirao, T., and Sugawa, T., J. Electrochem. Soc. 129 (1982) p. 837.CrossRefGoogle Scholar
51.Vanasupa, L.S., PhD Thesis, Stanford University, 1990.Google Scholar
52.Yeo, Y.K., Hengehold, R.L., Kim, Y.Y., Ezis, A., Park, Y.S., and Ehret, J.E., J. Appl. Phys. 58 (1985) p. 4083.CrossRefGoogle Scholar
53.He, L. and Anderson, W.A., J. Electron. Mater. 20 (1991) p. 359.CrossRefGoogle Scholar
54.Desnica, U.V., Wagner, J., Haynes, T.E., and Holland, O.W., J. Appl. Phys. 71 (1992) p. 2591.CrossRefGoogle Scholar
55.Haynes, T.E. and Holland, O.W., Appl. Phys. Lett. 59 (1991) p. 452.CrossRefGoogle Scholar
56.Haynes, T.E., Morton, R., and Lau, S.S., Appl. Phys. Lett. 64 (1994) p. 991.CrossRefGoogle Scholar
57.Moore, F.G., Dietrich, H.B., Dobisz, E.A., and Holland, O.W., Appl. Phys. Lett. 57 (1990) p. 911.CrossRefGoogle Scholar
58.Lee, C.C., Deal, M.D., Jones, K.S., Robinson, H.G., and Bravman, J.C., J. Electrochem. Soc. 141 (1994) p. 2245.CrossRefGoogle Scholar
59.Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Methods 174 (1980) p. 257.CrossRefGoogle Scholar
60.Lee, C.C., Deal, M.D., and Bravman, J.C., Appl. Phys. Lett. 64 (1994) p. 3302.CrossRefGoogle Scholar
61.Hansen, S.E. and Deal, M.D., eds., SUPREM-IV.GS: Two Dimensional Process Simulation for Silicon and Gallium Arsenide (Stanford University, Palo Alto, 1993).Google Scholar
62.Fatt, Y.S., J. Appl. Phys. 72 (1992) p. 2846.CrossRefGoogle Scholar
63.Kavanagh, K.L., Chang, J.C.P., Kirchner, P.D., Warren, A.C., and Woodall, J.M., Appl. Phys. Lett. 62 (1993) p. 286.CrossRefGoogle Scholar
64.Pavesi, L., Ky, N.H., Ganière, J.D., Reinhart, F.K., Baba-Ali, N., Harrison, I., Tuck, B., and Henini, M., J. Appl. Phys. 71 (1992) p. 2225.CrossRefGoogle Scholar
65.You, H-M., Gösele, U.M., and Tan, T.Y., J. Appl. Phys. 73 (1993) p. 7207.CrossRefGoogle Scholar
66.Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 69 (1991) p. 3547.CrossRefGoogle Scholar
67.Deal, M.D. and Robinson, H.G., Solid-State Electron. 33 (1990) p. 665.CrossRefGoogle Scholar
68.Harris, J.J., Clegg, J.B., Beali, R.B., Cadtagné, J., Woodridge, K., and Roberts, C., J. Cryst. Growth 111 (1991) p. 239.CrossRefGoogle Scholar
69.Hu, C.J., Deal, M.D., Robinson, H.G., and Plummer, J.D., in Proc. of SOTAPOCS XVIII (Electrochem. Soc. Proc, Honolulu, 1993) p. 296.Google Scholar
70.Hu, C.J., Deal, M.D., and Plummer, J.D. (unpublished manuscript).Google Scholar
71.Hu, C.J., Deal, M.D., and Plummer, J.D. (unpublished manuscript).Google Scholar
72.Iguchi, H., J. Mater. Res. 6 (1991) p. 1542.CrossRefGoogle Scholar
73.McLevige, W.V., Vaidanathan, K.V., and Streetman, B.G., Appl. Phys. Lett. 33 (1978) p. 127.CrossRefGoogle Scholar
74.Deal, M.D. and Robinson, H.G., Appl. Phys. Lett. 55 (1989) p. 1990.CrossRefGoogle Scholar
75.Uematsu, M., Wada, K., and Gösele, U., Appl. Phys. A55 (1992) p. 301.CrossRefGoogle Scholar
76.Griffin, P.B., Lever, R.F., Packan, P.A., and Plummer, J.D., Appl. Phys. Lett. 64 (1993) p. 1242.CrossRefGoogle Scholar
77.Giles, M.D., J. Electrochem. Soc. 138 (1991) p. 1160.CrossRefGoogle Scholar
78.Humer-Hager, T. and Zwicknagl, P., Jpn. J. Appl. Phys. 27 (1988) p. 428.CrossRefGoogle Scholar
79.DeLyon, T.J., Casey, J.H.C., Massoud, H.Z., Timmons, M.L., Hutchby, J.A., and Dietrich, H.B., Appl. Phys. Lett. 55 (1988) p. 2244.CrossRefGoogle Scholar
80.Robinson, H.G., Deal, M.D., and Stevenson, D.A., Appl. Phys. Lett. 56 (1990) p. 554.CrossRefGoogle Scholar
81.Baratte, H., Sadana, D.K., deSouza, J.P., Hallali, P.E., Schad, R.G., Norcott, M., and Cardone, F., J. Appl. Phys. 67 (1990) p. 6589.CrossRefGoogle Scholar
82.Jansen, R.W., Wolde-Kidane, D.S., and Sankey, O.F., J. Appl. Phys. 64 (1988) p. 2415.CrossRefGoogle Scholar
83.Retata, K., Debrie, R., and Ketata, M., J. Electronic Mater. 22 (1993) p. 129.Google Scholar
84.Csontos, L., Podor, B., Somogyi, K., and Andor, L., Proc. SPIE 1783 (1992) p. 559.CrossRefGoogle Scholar
85.Robinson, H.G., Deal, M.D., Stevenson, D.A., and Jones, K.S., in Advanced III-V Compound Semiconductor Growth, Processing and Devices (Mater. Res. Symp. Soc. Proc. 240, Pittsburgh, PA, 1991) p. 715.Google Scholar
86.Robinson, H.G., Jones, K.S., Deal, M.D., and Hu, C.J., in III-V Electronic and Photonic Device Fabrication and Performance (Mater. Res. Soc. Symp. Proc. 300, Pittsburgh, PA, 1993) p. 397.Google Scholar
87.Tuck, B., Atomic Diffusion in III-V Semiconductors (Adam Hilger, Bristol, 1988).Google Scholar
88.Horio, K. and Satoh, K., Electron. Lett. 29 (1993) p. 1128.CrossRefGoogle Scholar
89.Tuck, B. and Adegboyega, G.A., J. Phys. D 12 (1979) p. 1895.Google Scholar
90.Kasahara, J. and Watanabe, N., Jpn. J. Appl. Phys. 19 (1980) p. L151.CrossRefGoogle Scholar
91.Deal, M.D. and Stevenson, D.A., J. Appl. Phys. 59 (1986) p. 2398.CrossRefGoogle Scholar
92.Malik, R.J., Nagle, J., Micovic, M., Ryan, R.W., Harris, T., Geva, M., Hopkins, L.C., Vandenberg, J., Hull, R., Kopf, R.F., Anand, Y., and Braddock, W.D., J. Cryst. Growth 127 (1993) p. 686.CrossRefGoogle Scholar
93.Cheong, B-H. and Chang, K.J., Phys. Rev. B 49 (1994) p. 17436.CrossRefGoogle Scholar