Published online by Cambridge University Press: 29 November 2013
Metal-ceramic interfaces play an important, sometimes controlling, role in composites, multilayer substrates, capacitors, electron tubes, and automotive power sources. Often bonding and adhesion between the ceramic and metal are critical to the components' performance. Interface geometry and chemistry play a dominant role in determining the mechanical and electrical integrity of composites. Furthermore, unique properties may be developed from multilayer ceramic-metal structures.
Systematic studies of metal-ceramic interfaces started in the early 1960s. Such studies were directed toward identifying general rules that govern bonding and interface behavior both theoretically and experimentally, including the thermodynamics of interfacial reactions and crys-tallographic relationships, and toward evaluating atomistic structure at the interface. This article summarizes results concerning the interrelation between atomistic structure and the macroscopic fracture resistance of metal-ceramic interfaces. More details are published in a recent conference proceedings.
Determining atomistic structures of metal-ceramics interfaces is, in general, complicated since the two materials that have to be matched exhibit different atoms (ions) and possess different crystal symmetries, crystal structures, and lattice parameters. The adjacent lattices are not commensurate, the two different structures can be described as being just quasiperiodic. However, examples exist where the lattice mismatch is small, and both components possess the same lattice symmetry. Ag/MgO and Nb/Al2O3 interfaces are examples that serve as model systems for experimental studies as well as theoretical calculations. The interfaces can be formed either by diffusion-bonding, internal oxidation, or epitaxial film growth.