Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:27:09.825Z Has data issue: false hasContentIssue false

Microporous Inorganic Membranes for Gas Separation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Microporous inorganic membranes are potentially useful in gas separation in emerging areas such as catalytic reactors, gasification of coal, molten-carbonate and solid-electrolyte fuel cells, and water decomposition by thermochemical reactions. If the feed or product gases can be separated at elevated temperatures specific to each process, the energy required for purification could be greatly reduced. Advances in the development of inorganic membranes have been quite rapid in recent years. For example, in 1991 the reported CO2/N2 selectivity at ambient temperature was less than 10, but by 1997 it had improved to approximately 100.

The permeation rate and permselectivity of porous inorganic membranes are dependent on the microstructures of membrane/support composites such as pore size and distribution, porosity, tortuosity, and the affinity between permeating species and pore walls. Figure 1 shows the relationship between molecular weight and kinetic diameter (calculated from minimum equilibrium cross-sectional diameter) for a selected series of molecules. Hydrogen and helium are smaller and lighter than the others. Structural isomers such as n-C4H10 and i-C4H10 have the same mass but quite different sizes. Therefore, the control of micropores is of critical importance in these cases. However, the molecular masses and sizes of CO2 and N2 are not greatly different; thus the difference in affinity is important for separation of these molecules.

In order to achieve effective separation of small-molecule gases, the membrane pores should be smaller than 2 nm. In the case of mesopores or macropores, gases permeate with low selectivities through these pores. In this article, preparation processes and permeation properties of porous inorganic membranes are reviewed, and permeation mechanisms are discussed.

Type
Membranes and Membrane Processes
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Breck, D.W., Zeolite Molecular Sieves (John Wiley & Sons, New York, 1997).Google Scholar
2.Asaeda, M. and Kashimoto, M., in Proc. 5th Int. Conf. on Inorganic Membranes (The Membrane Society of Japan, 1998), edited by Nakao, S. (Nagoya, Japan, 1998) p. 172.Google Scholar
3.Raman, N.K. and Brinker, C.J., J. Membr. Sci. 105 (1995) p. 273.CrossRefGoogle Scholar
4.de Lange, R.S.A., Keizer, K., and Burggraaf, A.J., J. Membr. Sci. 104 (1995) p. 81.CrossRefGoogle Scholar
5.de Vos, R.M. and Verweij, H., J. Membr. Sci. 143 (1998) p. 37.CrossRefGoogle Scholar
6.Okui, T., Saito, Y., Okubo, T., and Sadakata, M., J. Sol-Gel Sci. Technol. 5 (1995) p. 127.CrossRefGoogle Scholar
7.Kusakabe, K., Ichiki, K., Hayashi, J-i., Maeda, H., and Morooka, S., J. Membr. Sci. 115 (1996) p. 65.CrossRefGoogle Scholar
8.Barboiu, M., Luca, C., Guizard, C., Hovnanian, N., Cot, L., and Popescue, G., J. Membr. Sci. 129 (1997) p. 197.CrossRefGoogle Scholar
9.Ohshima, Y., Seki, Y., and Maruyama, H., in Proc. 5th Int. Conf. on inorganic Membranes (The Membrane Society of Japan, 1998), edited by Nakao, S. (Nagoya, Japan, 1998) p. 668.Google Scholar
10.Li, D. and Hwang, S-T., J. Membr. Sci. 59 (1991) p. 351.CrossRefGoogle Scholar
11.Li, Z., Kusakabe, K., and Morooka, S., J. Membr. Sci. 118 (1996) p. 159.Google Scholar
12.Way, J.D. and Roberts, D.L., Sep. Sci. Technol. 27 (1992) p. 29.CrossRefGoogle Scholar
13.Shelekhin, A.B., Dixon, A.G., and Ma, Y.H., AIChE J. 41 (1995) p. 58.CrossRefGoogle Scholar
14.Gavalas, G.R., Megiris, C.E., and Nam, S.W., Chem. Eng. Sci. 44 (1989) p. 1829.CrossRefGoogle Scholar
15.Yan, S., Maeda, H., Kusakabe, K., Morooka, S., and Akiyama, T., Ind. Eng. Chem. Res. 33 (1994) p. 2096.CrossRefGoogle Scholar
16.Sea, B-K., Kusakabe, K., and Morooka, S., J. Member. Sci. 130 (1997) p. 41.CrossRefGoogle Scholar
17.Sea, B-K., Soewito, E., Watanabe, M., Kusakabe, K., Morooka, S., and Kim, S.S., Ind. Eng. Chem. Res. 37 (1998) p. 2502.CrossRefGoogle Scholar
18.Koresh, J.E. and Sofer, A., Sep. Sci. Technol. 18 (1983) p. 723.CrossRefGoogle Scholar
19.Rao, M.B. and Sircar, S., J. Membr. Sci. 85 (1993) p. 253.CrossRefGoogle Scholar
20.Chen, Y.D. and Yang, R.T., Ind. Eng. Chem. Res. 33 (1994) p. 3146.CrossRefGoogle Scholar
21.Jones, C.W. and Koros, W.J., Ind. Eng. Chem. Res. 34 (1995) p. 158.CrossRefGoogle Scholar
22.Hayashi, J-i., Yamamoto, M., Kusakabe, K., and Morooka, S., Ind. Eng. Chem. Res. p. 4364.Google Scholar
23.Hayashi, J-i., Mizuta, H., Yamamoto, M., Kusakabe, K., Morooka, S., and Suh, S-H., Ind. Eng. Chem. Res. 35 (1996) p. 4176.CrossRefGoogle Scholar
24.Hayashi, J-i., Mizuta, H., Yamamoto, M., Kusakabe, K., and Morooka, S., J. Membr. Sci. 124 (1997) p. 243.CrossRefGoogle Scholar
25.Hayashi, J-i., Yamamoto, M., Kusakabe, K., and Morooka, S., Ind. Eng. Chem. Res. 36 (1997) p. 2134.CrossRefGoogle Scholar
26.Kusuki, Y., Shimazaki, H., Tanihara, N., Nakanishi, S., and Yoshinaga, T., J. Membr. Sci. 134 (1997) p. 245.CrossRefGoogle Scholar
27.Geus, E.R., den Exter, M.J., and van Bekkum, H., J. Chem. Soc. Trans. Faraday Society 88 (20) (1992) p. 3101.CrossRefGoogle Scholar
28.Sano, T., Kiyozumi, Y., Maeda, K., Toba, M., Niwa, S-i., and Mizukami, F.,J. Mater. Chem. 2 (1992) p. 141.CrossRefGoogle Scholar
29.Matsukata, M., Nishiyama, N., and Ueyama, K., Microporous Mater. 1 (1993) p. 219.CrossRefGoogle Scholar
30.Kondo, M., Komori, M., Kita, H., and Okamoto, K-i., J. Membr. Sci. 133 (1997) p. 133.CrossRefGoogle Scholar
31.Kapteijn, F., Bakker, W.J.W., Zheng, G., Poppe, J., and Moulijn, J.A., Chem. Eng. J. 57 (1995) p. 145.Google Scholar
32.Bakker, W.J.W., Kapteijn, F., Poppe, J., and Moulijn, J.A., J. Membr. Sci. 117 (1996) p. 57.CrossRefGoogle Scholar
33.Bakker, W.J.W., van Broeke, L.J.P., Kapteijn, F., and Moulijn, J.A., AIChE J. 43 (1997) p. 2203.CrossRefGoogle Scholar
34.Kusakabe, K., Kuroda, T., Murata, A., and Morooka, S., Ind. Eng. Chem. Res. 36 (1997) p. 649.CrossRefGoogle Scholar
35.Kusakabe, K., Kuroda, T., and Morooka, S., J. Membr. Sci. 148 (1998) p. 13.CrossRefGoogle Scholar
36.Coronas, J., Falconer, J.L., and Noble, R.D., AIChE J. 43 (1997) p. 1797.CrossRefGoogle Scholar
37.Lovallo, M.C. and Tsapatsis, M., AIChE J. 42 (1996) p. 3020.CrossRefGoogle Scholar
38.Vroon, Z.A.E.P., Keizer, K., Burggraaf, A.J., and Verweij, H., J. Membr. Sci. 144 (1998) p. 65.CrossRefGoogle Scholar
39.Kusakabe, K., Yamamoto, M., and Morooka, S., J. Membr. Sci. 149 (1998) p. 59.CrossRefGoogle Scholar
40.Keizer, K., Burggraaf, A.J., Vroon, Z.A.E.P., and Verweij, H., J. Membr. Sci. 147 (1998) p. 159.CrossRefGoogle Scholar
41.Furukawa, S. and Nitta, T., J. Chem. Eng. Jpn. 30 (1997) p. 116.CrossRefGoogle Scholar
42.Takaba, H., Mizukami, K., Kubo, M., Fahmi, A., and Miyamoto, A., AIChE J. 44 (1998) p. 1335.CrossRefGoogle Scholar