Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T03:25:42.994Z Has data issue: false hasContentIssue false

Microfluidic Biomaterials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Biomedical applications—prostheses, tissue engineering, drug delivery, and wound healing—demand increasingly sophisticated characteristics from the materials that come into contact with living systems in the laboratory and the clinic. With the development of microfluidics, there is an opportunity to create active biomaterials based on embedded microfluidic structures. These structures allow for control of the concentrations of soluble chemicals and hydrodynamic stresses within the material and at its interfaces, and thus allow one to tailor the environment experienced by the living tissue. In this article, we review initial efforts to develop these microfluidic biomaterials and present considerations regarding the required characteristics of the materials and of the microfluidic-mediated mass transfer. As specific examples, we present work toward microfluidic control of mass transfer in scaffolds for tissue engineering and in wound dressings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Boontheekul, T.Kong, H.J. and Mooney, D.J.Biomaterials 26 (2005) p. 2455.CrossRefGoogle Scholar
2Burdick, J.A. and Anseth, K.S.Biomaterials 23 (2002) p. 4315.CrossRefGoogle Scholar
3Ratner, B.D. and Bryant, S.J.Annu. Rev. Biomed. Eng. 6 (2004) p. 41.Google Scholar
4Beebe, D.J.Moore, J.S.Yu, Q.Liu, R.H.Kraft, M.L.Jo, B.H. and Devadoss, C.Proc. Natl. Acad. Science US A 97 (2000) p. 13488.CrossRefGoogle Scholar
5Tsang, V.L. and Bhatia, S.N.Adv. Drug Deliv. Rev. 56 (2004) p. 1635.Google Scholar
6McDonald, J.C.Chabinyc, M.L.Metallo, S.J.Anderson, J.R.Stroock, A.D. and Whitesides, G.M.Anal. Chem. 74 (2002) p. 1537.CrossRefGoogle Scholar
7Pins, G.D.Toner, M. and Morgan, J.R.FASEB J.14 (2000) p. 593.Google Scholar
8Tang, M.D.Golden, A.P. and Tien, J.J. Am. Chem. Soc. 125 (2003) p. 12988.Google Scholar
9Mayer, M.Yang, J.Gitlin, I.Gracias, D.H. and Whitesides, G.M.Proteomics 4 (2004) p. 2366.CrossRefGoogle Scholar
10King, K.R.Wang, C.C.J.Kaazempur-Mofrad, M.R., Vacanti, J.P. and Borenstein, J.T.Adv. Mater. 16 (2004) p. 2007.Google Scholar
11Therriault, D.Shepherd, R.F.White, S.R.Lewis, J.A.Adv. Mater. 17 (2005) p. 395.Google Scholar
12LaBarbera, M.Science 249 (1990) p. 992.Google Scholar
13Fournier, R.L.Basic Transport Phenomena in Biomedical Engineering (Edwards Brothers, Lillington, N.C., 1998).Google Scholar
14Weisz, P.Science 179 (1973) p. 433.CrossRefGoogle Scholar
15Colton, C.K.Cell Transplantation 4 (1995) p. 415.CrossRefGoogle Scholar
16Cabodi, M.Choi, N.W.Gleghorn, J.P.Lee, C.S.D.Bonassar, L.J. and Stroock, A.D.J. Am. Chem. Soc. 127 (2005) p. 13788.CrossRefGoogle Scholar
17Langer, R. and Vacanti, J. Eds., Principles of Tissue Engineering (Academic Press, San Diego, 2000).Google Scholar
18Martin, I.Wendt, D. and Heberer, M.Trends Biotechnol. 22 (2004) p. 80.CrossRefGoogle Scholar
19Borenstein, J.T.Terai, H.King, K.R.Weinberg, E.J.Kaazempur-Mofrad, M.R., and Vacanti, J.P.Biomed. Microdevices 4 (2002) p. 167.CrossRefGoogle Scholar
20Fidkowski, C.Kaazempur-Mofrad, M.R., Borenstein, J.Vacanti, J.P.Langer, R. and Wang, Y.D.Tissue Eng. 11 (2005) p. 302.Google Scholar
21Chang, S.C.N.Rowley, J.A.Tobias, G.Genes, N.G.Roy, A.K.Mooney, D.J.Vacanti, C.A. and Bonassar, L.J.J. Biomed. Mater. Res. 55 (2001) p. 503.3.0.CO;2-S>CrossRefGoogle Scholar
22Rowley, J.A.Madlambayan, G. and Mooney, D.J.Biomaterials 20 (1999) p. 45.CrossRefGoogle Scholar
23Lambert, K.V.Hayes, P. and McCarthy, M.Eur. J. Vasc. Endovasc. Surg. 29 (2005) p. 219.CrossRefGoogle Scholar
24Morykwas, M.J. and Argenta, L.C.FASEB J. 7 (1993) p. A138.Google Scholar
25Saxena, V.Hwang, C.W.Huang, S.Eichbaum, Q.Ingber, D. and Orgill, D.P.Plastic Reconstruct. Surg. 114 (2004) p. 1086.Google Scholar
26Cabodi, M.Havenstrite, K.L.Curtis, V.Suzanne, S. and Stroock, A.D.A Microfluidic Wound Dressing and Wound Analysis Tool,” presented at the ASME Summer Bioengineering Conf. (Vail, Co., June 22-26, 2005).Google Scholar
27Liu, Q.Hedberg, E.L.Liu, Z.Bahulekar, R.Meszlenyi, R.K. and Mikos, A.G.Biomaterials 21 (2000) p. 2163.Google Scholar