Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:13:42.988Z Has data issue: false hasContentIssue false

Microbial Synthesis and Properties of Polyhydroxy-alkanoates

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A wide variety of microorganisms accumulate an optically active polymer of D(−)-3-hydroxybutyric acid, P(3HB), as an intracellular storage material of carbon and energy. The P(3HB) was first isolated from Bacillus megaterium in 1925 by Lemoigne. Many prokaryotic organisms, such as bacteria and cyanobacteria, have been found to accumulate P(3HB) up to 80% of their cellular dry weight when growth is limited by the depletion of an essential nutrient such as nitrogen, oxygen, phosphorus, or magnesium. Recently, many bacteria have been found to accumulate copolymers of D(−)3-hydroxy-alkanoic acids with a chain length ranging from three to 14 carbon atoms. In addition, 4-hydroxybutyric acid was found as a constituent of bacterial polyhy-droxyalkanoates (PHA).

Bacterial PHA polymers have attracted much attention as environmentally degradable thermoplastics for a wide range of agricultural, marine, and medical applications. PHA is degraded in soil, sludge, or sea water. Some microorganisms such as bacteria and fungi secrete extracellular PHA depolymerases to degrade environmental PHA and utilize the decomposed compounds as nutrients. In this article, I report the metabolism, production, and properties of bacterial PHA.

Type
Biology and Materials Synthesis
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dawes, E.A. and Senior, P.J., Adv. Microb. Physiol. 10 (1973) p. 135.CrossRefGoogle Scholar
2.Lemoigne, M., Ann. Inst. Pasteur (Paris) 39 (1925) p. 144; ibid. 41 (1927) p. 148.Google Scholar
3.Brandle, H., Gross, R.A., Lenz, R.W., and Fuller, R.C., Adv. Biochem. Eng. Biotechnol. 41 (1990) p. 77.Google Scholar
4.Doi, Y., Microbial Polyesters, VCH Publishers, New York, 1990.Google Scholar
5.Anderson, A.J. and Dawes, E.A., Microbiol. Rev. 54 (1990) p. 450.CrossRefGoogle Scholar
6.Steinbüchel, A., in Biomaterials, edited by Byrom, D. (Macmillan Publishers, Basingstone, 1991) p. 123.CrossRefGoogle Scholar
7.Holms, P.A., in Development in Crystalline Polymer-2, edited by Bassett, D.C. (Elsevier, London, 1988) p. 1.Google Scholar
8.Oeding, V. and Schlegel, H.G., Biochem. J. 134 (1973) p. 239.CrossRefGoogle Scholar
9.Haywood, G.W., Anderson, A.J., Chu, L., and Dawes, E.A., FEMS Microbiol. Lett. 52 (1988) p. 91; ibid. 52 (1988) p. 259; ibid. 57 (1989) p. 1.CrossRefGoogle Scholar
10.Doi, Y., Segawa, A., Kawaguchi, Y., and Kunioka, M., FEMS Microbiol. Lett. 67 (1990) p. 165.CrossRefGoogle Scholar
11.Kawaguchi, Y. and Doi, Y., Macromolecules 25 (1992) p. 234.Google Scholar
12.Peoples, O.P. and Sinskey, A.J., J. Biol. Chem. 264 (1989) p. 15293; ibid. 264 (1989) p. 15298.CrossRefGoogle Scholar
13.Schubert, P., Steinbüchel, A., and Schlegel, H.G., J. Bacteriol. 170 (1988) p. 5837; P. Schubert, N. Krüger, and A. Steinbüchel, J. Bacteriol. 173 (1991) p. 163; A. Steinbüchel and H.G. Schlegel, Mol. Microbiol. 5 (1991) p. 535.CrossRefGoogle Scholar
14.Slater, S.C., Voige, W.H., and Dennis, D.E., J. Bacteriol. 170 (1988) p. 4431; S. Slater, T. Gallaher, and D. Dennis, Appl. Environ. Microbiol. 58 (1992) p. 1089.CrossRefGoogle Scholar
15.Poirier, Y., Dennis, D.E., Klomparens, K., and Somerville, C., Science 256 (1992) p. 520.CrossRefGoogle Scholar
16.Byrom, D., Trends Biotechnol. 5 (1987) p. 246.CrossRefGoogle Scholar
17.Doi, Y., Tamaki, A., Kunioka, M., and Soga, K., Appl. Microbiol. Biotechnol. 28 (1988) p. 330.CrossRefGoogle Scholar
18.Kunioka, M., Nakamura, Y., and Doi, Y., Polymer Commun. 29 (1988) p. 174; Appl. Microbiol. Biotechnol. 30 (1989) p. 569.Google Scholar
19.Nakamura, S., Kunioka, M., and Doi, Y., Macromol. Rep. A28 (1991) p. 15.Google Scholar
20.DeSmet, M.J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., J. Bacteriol. 154 (1983) p. 870; G.W. Huisman, O. DeLeeuw, G. Eggink, and B. Witholt, Appl. Environ. Microbiol. 55 (1989) p. 1949.CrossRefGoogle Scholar
21.Brandl, H., Gross, R.A., Lenz, R.W., and Fuller, R.C., Appl. Environ. Microbiol. 54 (1988) p. 1977; K. Fritzsche, R.W. Lenz, and R.C. Fuller, Makromol. Chem. 191 (1990) p. 1957; Y.B. Kim, R.W. Lenz, and R.C. Fuller, Macromolecules 24 (1991) p. 5256.CrossRefGoogle Scholar
22.Timm, A. and Steinbüchel, A., Appl. Environ. Microbiol. 56 (1990) p. 3360.CrossRefGoogle Scholar
23.Haywood, G.W., Anderson, A.J., and Dawes, E.A., Biotechnol. Lett. 11 (1989) p. 471; Appl. Environ. Microbiol. 56 (1990) p. 3354.CrossRefGoogle Scholar
24.Doi, Y. and Abe, C., Macromolecules 23 (1990) p. 3705; C. Abe, Y. Taima, Y. Nakamura, and Y. Doi, Polymer Commun. 31 (1990) p. 404.CrossRefGoogle Scholar
25.Eller, D., Lundgren, D.G., Okumura, K., and Marchessault, R.H., J. Mol. Biol. 35 (1968) p. 489; J. Cornibert and R.H. Marchessault, J. Mol. Biol. 71 (1972) p. 735.CrossRefGoogle Scholar
26.Kunioka, M., Tamaki, A., and Doi, Y., Macromolecules 22 (1989) p. 694.CrossRefGoogle Scholar
27.Doi, Y., Kanesawa, Y., Tanahashi, N., and Kumagai, Y., Polym. Degrad. Stabil. 36 (1992) p. 173.CrossRefGoogle Scholar
28.Lusty, C.J. and Doudoroff, M., Proc. Nail. Acad. Sci. U.S.A. 56 (1966) p. 960.CrossRefGoogle Scholar
29.Tanio, T., Fukui, T., Shirakura, Y., Saito, T., Tomota, K., Kaiho, T., and Masamune, S., Eur. J. Biochem. 124 (1982) p. 71; T. Saito, K. Suzuki, J. Yamamoto, T. Fukui, K. Miwa, K. Tomita, S. Nakanishi, S. Odani, J. Suzuki, and K. Ishikawa, J. Bacteriol. 171 (1989) p. 184.CrossRefGoogle Scholar
30.Brucato, C.L. and Wong, S.S., Arch. Biochem. Biophys. 290 (1991) p. 497.CrossRefGoogle Scholar
31.Doi, Y., Kanesawa, Y., Kunioka, M., and Saito, Y., Macromolecules 23 (1990) p. 26; Y. Kumagai, Y. Kanesawa, and Y. Doi, Makromol. Chem. 193 (1992) p. 53.CrossRefGoogle Scholar