Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T03:28:03.308Z Has data issue: false hasContentIssue false

Mechanics of stretchable electronics and soft machines

Published online by Cambridge University Press:  12 March 2012

Zhigang Suo*
Affiliation:
Harvard University, Cambridge, MA 02138, USA; [email protected]
Get access

Abstract

In the emerging field of soft machines, large deformation of soft materials is harnessed to provide functions such as regulating flow in microfluidics, shaping light in adaptive optics, harvesting energy from ocean waves, and stretching electronics to interface with living tissues. Soft materials, however, do not provide all of the requisite functions; rather, soft machines are mostly hybrids of soft and hard materials. In addition to requiring stretchable electronics, soft machines often use soft materials that can deform in response to stimuli other than mechanical forces. Dielectric elastomers deform under a voltage. Hydrogels swell in response to changes in humidity, pH, temperature, and salt concentration. How does mechanics meet geometry, chemistry, and electrostatics to generate large deformation? How do molecular processes affect the functions of transducers? How efficiently can materials convert energy from one form to another? These questions are stimulating intriguing and useful advances in mechanics. This review highlights the mechanics that enables the creation of soft machines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Guyton, A.C., Hall, J.E., Textbook of Medical Physiology (Saunders, Oxford, UK, 2000).Google Scholar
2.Carpi, F., Frediani, G., Turco, S., De Rossi, D., Adv. Functional Mater. 21, 4152 (2011).CrossRefGoogle Scholar
3.Zwieniecki, M.A., Melcher, P.J., Holbrook, N.M., Science 291, 1059 (2001).Google Scholar
4.Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.H., Nature 404, 588 (2000).CrossRefGoogle Scholar
5.Cai, S.Q., Lou, Y.C., Ganguly, P., Robisson, A., Suo, Z.G., J. Appl. Phys. 107, 103535 (2010).Google Scholar
6.Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J., Science 315, 487 (2007).CrossRefGoogle Scholar
7.Masuda, F., in Superabsorbent Polymers, ACS Symposium Series, Vol. 573. (1994), p. 88.Google Scholar
8.Hsu, P.I., Bhattacharya, R., Gleskova, H., Huang, M., Xi, Z., Suo, Z., Wagner, S., Sturm, J.C., Appl. Phys. Lett. 81, 1723 (2002).Google Scholar
9.Suo, Z.G., Vlassak, J.J., Wagner, S., Chin. Particuol. 3, 321 (2005).Google Scholar
10.Suo, Z.G., Ma, E.Y., Gleskova, H., Wagner, S., Appl. Phys. Lett. 74, 1177 (1999).CrossRefGoogle Scholar
11.Ko, H.C., Stoykovich, M.P., Song, J.Z., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., Xiao, J.L., Wang, S.D., Huang, Y.G., Rogers, J.A., Nature 454, 784 (2008).CrossRefGoogle Scholar
12.Bhattacharya, R., Salomon, A., Wagner, S., J. Electrochem. Soc. 153, G259 (2006).Google Scholar
13.Gleskova, H., Wagner, S., Suo, Z., Appl. Phys. Lett. 75, 3011 (1999).Google Scholar
14.Lu, N.S., Yoon, J., Suo, Z.G., Int. J. Mater. Res. 98, 717 (2007).CrossRefGoogle Scholar
15.Lacour, S.P., Wagner, S., Narayan, R.J., Li, T., Suo, Z., J. Appl. Phys. 100, 014913 (2006).CrossRefGoogle Scholar
16.Kim, D.H., Kim, Y.S., Wu, J., Liu, Z.J., Song, Jizhou, Kim, H.S., Huang, Y.Y., Hwang, K.C., Rogers, J.A., Adv. Mater. 21, 3703 (2009).Google Scholar
17.Sun, J.Y., Lu, N.S., Yoon, J., Oh, K.H., Suo, Z.G., Vlassak, J.J., J. Mater. Res. 24, 3338 (2009).CrossRefGoogle Scholar
18.Gray, D.S., Tien, J., Chen, C.S., Adv. Mater. 16, 393 (2004).CrossRefGoogle Scholar
19.Lacour, S.P., Wagner, S., Huang, Z.Y., Suo, Z.G., Appl. Phys. Lett. 82, 2404 (2003).CrossRefGoogle Scholar
20.Khang, D.Y., Jiang, H.Q., Huang, Y.G., Rogers, J.A., Science 311, 208 (2006).CrossRefGoogle Scholar
21.Li, T., Suo, Z.G., Lacour, S.P., Wagner, S., J. Mater. Res. 20, 3274 (2005).CrossRefGoogle Scholar
22.Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S., Suo, Z.G., Mech. Mater. 37, 261 (2005).CrossRefGoogle Scholar
23.Lu, N.S., Wang, X., Suo, Z.G., Vlassak, J.J., Appl. Phys. Lett. 91, 221909 (2007).CrossRefGoogle Scholar
24.Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M., PNAS, doi/10.1073/pnas.1116564108.Google Scholar
25.Pelrine, R., Kornbluh, R., Pei, Q.B., Joseph, J., Science 287, 836 (2000).CrossRefGoogle Scholar
26.Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P., Dielectric Elastomers as Electromechanical Transducers (Elsevier, Oxford, UK, 2008).Google Scholar
27.Brochu, P., Pei, Q.B., Macromol. Rapid Commun. 31, 10 (2010).CrossRefGoogle Scholar
28.Carpi, F., Bauer, S., De Rossi, D., Science 330, 1759 (2010).CrossRefGoogle ScholarPubMed
29.Toupin, R.A., J. Ration. Mech. Anal. 5, 849 (1956).Google Scholar
30.Goulbourne, N., Mockensturm, E., Frecker, M., J. Appl. Mech. 72, 899 (2005).CrossRefGoogle Scholar
31.McMeeking, R.M., Landis, C.M., J. Appl. Mech. 72, 581 (2005).Google Scholar
32.Dorfmann, A., Ogden, R.W., Acta Mech. 174, 167 (2005).CrossRefGoogle Scholar
33.Suo, Z.G., Acta Mech. Solida Sin. 23, 549 (2010).CrossRefGoogle Scholar
34.Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S., PNAS 107, 4505 (2010).Google Scholar
35.Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R., J. Intell. Mater. Sys. Struct. 14, 787 (2003).Google Scholar
36.Zhao, X.H., Hong, W., Suo, Z.G., Phys. Rev. B 76, 134113 (2007).Google Scholar
37.Lochmatter, P., Kovacs, G., Michel, S., Sens. Actuators, A 135, 748 (2007).Google Scholar
38.Zhang, Q.M., Bharti, V., Zhao, X., Science 280, 2101 (1998).Google Scholar
39.Ha, S.M., Yuan, W., Pei, Q.B., Pelrine, R., Stanford, S., Adv. Mater. 18, (2006).CrossRefGoogle Scholar
40.Shankar, R., Ghosh, T.K., Spontak, R.J., Adv. Mater. 19, 2218 (2007).Google Scholar
41.Stark, K.H., Garton, C.G., Nature 176, 1225 (1955).Google Scholar
42.Zhao, X.H., Suo, Z.G., Phys. Rev. Lett. 104, 178302 (2010).Google Scholar
43.Keplinger, C., Li, T.F., Baumgartner, R., Suo, Z.G., Bauer, S., Soft Matter 8, 285 (2012).CrossRefGoogle Scholar
44.Wissler, M., Mazza, E., Sens. Actuators, A 120, 184 (2005).CrossRefGoogle Scholar
45.Zhao, X.H., Suo, Z.G., Appl. Phys. Lett. 93, 251902 (2008).Google Scholar
46.O’Brien, B., McKay, T., Calius, E., Xie, S., Anderson, I., Appl. Phys. A 94, 507 (2009).Google Scholar
47.Calvert, P., Adv. Mater. 21, 743 (2009).Google Scholar
48.Hong, W., Zhao, X.H., Zhou, J.X., Suo, Z.G., J. Mech. Phys. Solids 56, 1793 (2008).Google Scholar
49.Meng, H., Hu, J.L., J. Int. Mater. Sys. Struct. 21, 859 (2010).CrossRefGoogle Scholar
50.Kaltenbrunner, M., Kettlgruber, G., Siket, C., Schwodiauer, R., Bauer, S., Adv. Mater. 22, 2065 (2010).CrossRefGoogle Scholar
51.Forterre, Y., Skotheim, J.M., Dumains, J., Mahadevan, L., Nature 433, 421 (2005).Google Scholar
52.Lee, H.W., Xia, C.G., Fang, N.X., Soft Matter 6, 4342 (2010).CrossRefGoogle Scholar
53.des Cloizeaux, J., Jannink, G., Polymers in Solution (Oxford University Press, Oxford, UK, 1990).Google Scholar
54.Hong, W., Liu, Z.S., Suo, Z.G., Int. J. Solids Struct. 46, 3282 (2009).Google Scholar
55.Marcombe, R., Cai, S.Q., Hong, W., Zhao, X.H., Lapusta, Y., Suo, Z.G., Soft Matter 6, 784 (2010).CrossRefGoogle Scholar
56.Chester, S.A., Anand, L., J. Mech. Phys. Solids 58, 1879 (2010).CrossRefGoogle Scholar
57.Galli, M., Oyen, M.L., CMES 48, 241 (2009).Google Scholar
58.Hu, Y.H., Zhao, X.H., Vlassak, J.J., Suo, Z.G., Appl. Phys. Lett. 96, 121904 (2010).CrossRefGoogle Scholar
59.Cai, S.Q., Suo, Z.G., EPL 97, 34009 (2012).CrossRefGoogle Scholar