Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T08:49:18.364Z Has data issue: false hasContentIssue false

Materials that harness and modulate the immune system

Published online by Cambridge University Press:  10 January 2014

Jamal S. Lewis
Affiliation:
University of Florida, Gainesville; [email protected]
Krishnendu Roy
Affiliation:
University of Texas at Austin; [email protected]
Benjamin G. Keselowsky
Affiliation:
University of Florida; [email protected]
Get access

Abstract

Recently, biomaterial scientists have married materials engineering and immunobiology to conceptualize new immunomodulatory materials. This special class of biomaterials can modulate and harness the innate properties of immune functionality for enhanced therapeutic efficacy. Generally, two fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-evasive (immuno-mimetic, immuno-suppressing, or immuno-inert) biomaterials and (2) immuno-activating or immuno-enhancing biomaterials. This article highlights the development and application of a number of immunomodulatory materials, categorized by these two general approaches.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.T., Pulendran, B., Palucka, K., Annu. Rev. Immunol. 18, 767 (2000).CrossRefGoogle Scholar
Akira, S., Uematsu, S., Takeuchi, O., Cell 124, 783 (2006).Google Scholar
Iwasaki, A., Medzhitov, R., Science 327, 291 (2010).Google Scholar
Medzhitov, R., Janeway, C.A., Curr. Opin. Immunol. 9, 4 (1997).Google Scholar
Anderson, J.M., Annu. Rev. Mater. Res. 31, 81 (2001).CrossRefGoogle Scholar
Boehler, R.M., Graham, J.G., Shea, L.D., Biotechniques 51, 239 (2011).Google Scholar
Marchant, R.E., Yuan, S., Szakalasgratzl, G., J. Biomater. Sci., Polym. Ed. 6, 549 (1994).Google Scholar
Dalsin, J.L., Lin, L., Tosatti, S., Vörös, J., Textor, M., Messersmith, P.B., Langmuir 21, 640 (2005).CrossRefGoogle Scholar
Chen, S., Jones, A., Xu, Y., Low, H.Y., Anderson, J.M., Leong, K.W., Biomaterials 31, 3479 (2010).Google Scholar
Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., Missirlis, Y.F., Biomaterials 22, 1241 (2001).Google Scholar
Bayramoglu, G., Yilmaz, M., Batislam, E., Arica, M., J. Appl. Polym. Sci. 109, 749 (2008).CrossRefGoogle Scholar
Jones, J.A., Chang, D.T., Meyerson, H., Colton, E., Kwon, I.K., Matsuda, T., Anderson, J.M., J. Biomed. Mater. Res. A 83A, 585 (2007).Google Scholar
Novak, M.T., Bryers, J.D., Reichert, W.M., Biomaterials 30, 1989 (2009).CrossRefGoogle ScholarPubMed
Acharya, A.P., Dolgova, N.V., Clare-Salzler, M.J., Keselowsky, B.G., Biomaterials 29, 4736 (2008).Google Scholar
Hume, P.S., He, J., Haskins, K., Anseth, K.S., Biomaterials 33, 3615 (2012).Google Scholar
Kim, D.H., Smith, J.T., Chilkoti, A., Reichert, W.M., Biomaterials 28, 3369 (2007).Google Scholar
Aizawa, Y., Leipzig, N., Zahir, T., Shoichet, M., Biomaterials 29, 4676 (2008).Google Scholar
Hahn, S.K., Jelacic, S., Maier, R.V., Stayton, P.S., Hoffman, A.S., J. Biomater. Sci., Polym. Ed. 15, 1111 (2004).Google Scholar
Kostina, N.Y., Rodriguez-Emmenegger, C., Houska, M., Brynda, E., Michalek, J., Biomacromolecules 13, 4164 (2012).Google Scholar
Lin, C.C., Boyer, P.D., Aimetti, A.A., Anseth, K.S., J. Control. Release 142, 384 (2010).CrossRefGoogle Scholar
Lee, P.Y., Li, Z.H., Huang, L., Pharm. Res. 20, 1995 (2003).Google Scholar
Lin, C.C., Metters, A.T., Anseth, K.S., Biomaterials 30, 4907 (2009).Google Scholar
Prichard, H.L., Reichert, W.M., Klitzman, B., Biomaterials 28, 936 (2007).CrossRefGoogle ScholarPubMed
Prichard, H.L., Reichert, W., Klitzman, B., Stem Cells 26, 2691 (2008).Google Scholar
Makela, P.H., FEMS Microbiol. Rev. 24, 9 (2000).CrossRefGoogle Scholar
Edelman, R., Rev. Infect. Dis. 2, 370 (1980).Google Scholar
Gupta, R.K., Adv. Drug Delivery Rev. 32, 155 (1998).Google Scholar
Girard, M.P., Ann. Pharm. Fr. 67, 203 (2009).CrossRefGoogle Scholar
Banchereau, J., Steinman, R.M., Nature 392, 245 (1998).Google Scholar
Morris, S., Swanson, M.S., Lieberman, A., Reed, M., Yue, Z., Lindell, D.M., Lukacs, N.W., J. Immunol. 187, 3953 (2011).CrossRefGoogle Scholar
Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., Cell 133, 775 (2008).Google Scholar
Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J., Takahashi, T., Nomura, T., Immunol. Rev. 212, 8 (2006).Google Scholar
Leleux, J., Roy, K., Adv. Healthcare Mater. 2, 72 (2013).Google Scholar
Holmgren, J., Czerkinsky, C., Nat. Med. 11, S45 (2005).Google Scholar
Kaul, D., Ogra, P.L., Dev. Biol. Stand. 95, 141 (1998).Google Scholar
Ryan, E.J., Daly, L.M., Mills, K.H.G., Trends Biotechnol. 19, 293 (2001).Google Scholar
Mallapragada, S.K., Narasimhan, B., Int. J. Pharm. 364, 265 (2008).Google Scholar
Jones, K.S., Biotechnol. Progr. 24, 807 (2008).Google Scholar
Ott, G., Barchfeld, G.L., Chernoff, D., Radhakrishnan, R., van Hoogevest, P., Van Nest, G., Pharm. Biotechnol. 6, 277 (1995).Google Scholar
Quintilio, W., Kubrusly, F.S., Iourtov, D., Miyaki, C., Sakauchi, M.A., Lucio, F., Dias, S.d.C., Takata, C.S., Miyaji, E.N., Higashi, H.G., Leite, L.C., Raw, I., Vaccine 27, 4219 (2009).CrossRefGoogle ScholarPubMed
Ioannou, X.P., Gomis, S.M., Hecker, R., Babiuk, L.A., Littel-van den Hurk, S., Vaccine 21, 4368 (2003).Google Scholar
Ruedl, C., Rieser, C., Kofler, N., Wick, G., Wolf, H., Vaccine 14, 792 (1996).Google Scholar
Matsue, H., Morita, A., Matsue, K., Takashima, A., J. Dermatol. (Tokyo) 26, 757 (1999).Google Scholar
Fadilah, S.A.W., Cheong, S.K., Malaysian J. Pathol. 29, 1 (2007).Google Scholar
Yi, D., Appel, S., Scand. J. Immunol. 78, 167 (2013).Google Scholar
Keselowsky, B.G., Xia, C.Q., Clare-Salzler, M., Hum. Vaccines 7, 37 (2011).Google Scholar
McIntyre, J.A., Fernandez, D., Drugs Future 30, 892 (2005).Google Scholar
Doehn, C., Boehmer, T., Kausch, I., Sommerauer, M., Jocham, D., Biodrugs 22, 71 (2008).Google Scholar
Ali, O.A., Dranoff, G., Mooney, D.J., Proc. Annu. Meet. Am. Assoc. Cancer Res. 48, 652 (2007).Google Scholar
Lemoine, D., Wauters, F., Bouchend’homme, S., Preat, V., Int. J. Pharm. 176, 9 (1998).Google Scholar
Chen, Y.Z., Yao, X.L., Tabata, Y., Nakagawa, S., Gao, J.Q., Clin. Dev. Immunol. 2010, 565643 (2010).Google Scholar
Claassen, E., Deleeuw, W., Degreeve, P., Hendriksen, C., Boersma, W., Res. Immunol. 143, 478 (1992).Google Scholar
Ianaro, A., Tersigni, M., D’Acquisto, F., Mini Rev. Med. Chem. 9, 306 (2009).Google Scholar
Akira, S., Takeda, K., Kaisho, T., Nat. Immunol. 2, 675 (2001).Google Scholar
Jiang, W., Gupta, R.K., Deshpande, M.C., Schwendeman, S.P., Adv. Drug Delivery Rev. 57, 391 (2005).Google Scholar
Ohagan, D.T., Rahman, D., Mcgee, J.P., Jeffery, H., Davies, M.C., Williams, P., Davis, S.S., Challacombe, S.J., Immunology 73, 239 (1991).Google Scholar
Rajapaksa, T.E., Lo, D.D., Curr. Immunol. Rev. 6, 29 (2010).Google Scholar
Mountziaris, P.M., Sing, D.C., Chew, S.A., Tzouanas, S.N., Lehman, E.D., Kasper, F., Mikos, A.G., Pharm. Res. 28, 1370 (2011).Google Scholar
Mohammadi, G., Valizadeh, H., Barzegar-Jalali, M., Lotfipour, F., Adibkia, K., Milani, M., Azhdarzadeh, M., Kiafar, F., Nokhodchi, A., Colloids Surf., B 80, 34 (2010).Google Scholar
Waeckerle-Men, Y., Groettrup, M., Adv. Drug Delivery Rev. 57, 475 (2005).Google Scholar
Benoit, M.A., Baras, B., Gillard, J., Int. J. Pharm. 184, 73 (1999).Google Scholar
Gregoriadis, G., Trends Biotechnol. 13, 527 (1995).Google Scholar
Webster, D.M., Sundaram, P., Byrne, M.E., Eur. J. Pharm. Biopharm. 84, 1 (2013).Google Scholar
Li, X., Kong, , Shi, S., Zheng, X., Guo, G., Wei, Y., Qian, Z., BMC Biotech. 8, 89 (2008).Google Scholar
Haining, W.N., Anderson, D.G., Little, S.R., von Berwelt-Baildon, M.S., Cardoso, A.A., Alves, P., Kosmatopoulos, K., Nadler, L.M., Langer, R., Kohane, D.S., J. Immunol. 173, 2578 (2004).Google Scholar
Elamanchili, P., Diwan, M., Cao, M., Samuel, J., Vaccine 22, 2406 (2004).Google Scholar
Kasturi, S.P., Skountzou, I., Albrecht, R.A., Koutsonanos, D., Hua, T., Nakaya, H.I., Ravindran, R., Stewart, S., Alam, M., Kwissa, M., Villinger, F., Murthy, N., Steel, J., Jacob, J., Hogan, R.J., Garcia-Sastre, A., Compans, R., Pulendran, B., Nature 470, 543 (2011).Google Scholar
Hirosue, S., Kourtis, I.C., van der Vlies, A.J., Hubbell, J.A., Swartz, M.A., Vaccine 28, 7897 (2010).Google Scholar
Torres, M.P., Wilson-Welder, J.H., Lopac, S.K., Phanse, Y., Carrillo-Conde, B., Ramer-Tait, A.E., Bellaire, B.H., Wannemuehler, M.J., Narasimhan, B., Acta Biomater. 7, 2857 (2011).Google Scholar
Singh, A., Suri, S., Roy, K., Biomaterials 30, 5187 (2009).Google Scholar
Roy, D., Cambre, J.N., Sumerlin, B.S., Prog. Polym. Sci. 35, 278 (2010).Google Scholar
Motornov, M., Roiter, Y., Tokarev, I., Minko, S., Prog. Polym. Sci. 35, 174 (2010).CrossRefGoogle Scholar
Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M., J. Control. Release 126, 187 (2008).Google Scholar
Foster, S., Duvall, C.L., Crownover, E.F., Hoffman, A.S., Stayton, P.S., Bioconjugate Chem. 21, 2205 (2010).Google Scholar
Rudra, J.S., Mishra, S., Chong, A.S., Mitchell, R.A., Nardin, E.H., Nussenzweig, V., Collier, J.H., Biomaterials 33, 6476 (2012).Google Scholar
Phillips, B., Nylander, K., Harnaha, J., Machen, J., Lakomy, R., Styche, A., Gillis, K., Brown, L., Lafreniere, D., Gallo, M., Knox, J., Hogeland, K., Trucco, M., Giannoukakis, N., Diabetes 57, 1544 (2008).Google Scholar
Jhunjhunwala, S., Raimondi, G., Thomson, A., Little, S., J. Control. Release 133, 191 (2009).Google Scholar
Lewis, J.S., Zaveri, T.D., Crooks, C.P., Keselowsky, B.G., Biomaterials 33, 7221 (2012).Google Scholar
Bandyopadhyay, A., Fine, R.L., Demento, S., Bockenstedt, L.K., Fahmy, T.M., Biomaterials 32, 3094 (2011).CrossRefGoogle Scholar
Tsai, S., Shameli, A., Yamanouchi, J., Clemente-Casares, X., Wang, J., Serra, P., Yang, Y., Medarova, Z., Moore, A., Santamaria, P., Immunity 32, 568 (2010).Google Scholar