Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:33:56.889Z Has data issue: false hasContentIssue false

Materials challenges for the heat-assisted magnetic recording head–disk interface

Published online by Cambridge University Press:  09 February 2018

James D. Kiely
Affiliation:
Seagate Technology, USA; [email protected]
Paul M. Jones
Affiliation:
Seagate Technology, USA; [email protected]
Joel Hoehn
Affiliation:
Seagate Technology, USA; [email protected]
Get access

Abstract

The heat-assisted magnetic recording (HAMR) head–disk interface is a unique operating environment that combines nanoscale spacings, high shear rates, high-temperature gradients, and high optical fluxes in a mass-produced device. One of the greatest challenges is to develop materials for the head–disk interface that enable the required head–media spacing while also providing reliability. Traditional head–disk interface materials, engineered and optimized for conventional magnetic recording hard-disk drives, are challenged to provide the needed performance at the high temperatures that HAMR involves. We review some of the primary materials used in conventional magnetic recording, how high temperatures challenge their performance, and some of the current understanding and strategies to develop a reliable HAMR head–disk interface.

Type
Materials for Heat-Assisted Magnetic Recording
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhushan, B., Tribology and Mechanics of Magnetic Storage Devices (Springer-Verlag, New York, 1996).CrossRefGoogle Scholar
Jorgensen, F., The Complete Handbook of Magnetic Recording (TAB Books, New York, 1996).Google Scholar
Tsai, H.C., Bogy, D.B., J. Vac. Sci. Technol. A 5 (6), 3287 (1987).CrossRefGoogle Scholar
Kiely, J.D., Jones, P.M., Wang, H., Yang, R., Scholz, W., Benakli, M., Brand, J.L., Ganagopadhyay, S., IEEE Trans. Magn. 50 (3), 3300505 (2014).CrossRefGoogle Scholar
Marchon, B., Pitchford, T., Hsia, Y.-T., Gangopadhyay, S., Adv. Tribol. 2013, 521086 (2013).Google Scholar
Gross, W., IBM J. Res. Dev. 3, 237 (1959).CrossRefGoogle Scholar
Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., Erden, M.F., Proc. IEEE 96 (11), 1810 (2008).CrossRefGoogle Scholar
Grill, A., Wear 168, 143 (1993).CrossRefGoogle Scholar
Mate, C.M., Wear 168, 17 (1993).CrossRefGoogle Scholar
Jones, P.M., Ahner, J., Platt, C., Tang, H., Hohlfield, J., “Carbon Overcoat Loss from the Surface of a Heat Assisted Magnetic Recording Disk Due to Laser Irradiation,” presented at the ASME Information Storage and Processing Systems Conference (ASME, Santa Clara, CA, 2013).Google Scholar
Wang, N., Komvopoulos, K., Rose, F., Marchon, B., J. Appl. Phys. 113, 083517 (2013).CrossRefGoogle Scholar
Joshi, A., Nimmagadda, R., Herrington, J., J. Vac. Sci. Technol. A 8 (3), 2137 (1990).CrossRefGoogle Scholar
Challener, W., Erden, F., Gage, E., Hsia, Y.-T., Ju, G., Kryder, M., McDaniel, T., Rottmayer, R., Proc. IEEE 96 (11), 1810 (2008).Google Scholar
Chowalla, M., Ferrari, A., Robertson, J., Amaratunga, G., Appl. Phys. Lett. 76, 1419 (2000).CrossRefGoogle Scholar
Louro, C., Wagner Moura, C., Carvalho, N., Stueber, M., Cavaleiro, A., Diam. Relat. Mater. 20, 57 (2011).CrossRefGoogle Scholar
Hsia, Y.-T., Jones, P.M., Li, L., Hohlfeld, J., “HAMR Head-Disk Interface—Lubricant Desorption and Laser Damage Study,” presented at the Asia-Pacific Magnetic Recording Conference 2004 (IEEE, Seoul, South Korea, 2004).Google Scholar
Johnson, K.E., Mate, C.M., Merz, J.A., White, R.L., Wu, A.W., IBM J. Res. Dev. 40 (5), 511 (1996).CrossRefGoogle Scholar
Wu, L., Nanotechnology 18, 215702 (2007).CrossRefGoogle Scholar
Wu, L., Talke, F., Microsyst. Technol. 17, 1109 (2011).CrossRefGoogle Scholar
Zheng, Y., Zhou, W., Huang, X., Int. J. Heat Mass Transf. 55, 886 (2012).CrossRefGoogle Scholar
Dahl, J.B., Bogy, D.B., Tribol. Lett. 52, 27 (2013).CrossRefGoogle Scholar
Dahl, J.B., Bogy, D.B., Tribol. Lett. 52, 163 (2013).CrossRefGoogle Scholar
Marchon, B., Saito, T., IEEE Trans. Magn. 48 (11), 4471 (2012).CrossRefGoogle Scholar
Tagawa, N., Tani, H., IEEE Trans. Magn. 47 (1), 105 (2011).CrossRefGoogle Scholar
Ma, Y., Chen, X., Liu, B., Microsyst. Technol. 19, 291 (2013).CrossRefGoogle Scholar
Tagawa, N., Kakitani, R., Tani, H., Iketani, N., Nakano, I., IEEE Trans. Magn. 45, 877 (2009).CrossRefGoogle Scholar
Lim, M., Gellman, A., Tribol. Int. 38, 544 (2005).CrossRefGoogle Scholar
Ferrari, A.C., Kleinsorge, B., Morrison, N.A., Hart, A., Stolojan, V., Robertson, J., J. Appl. Phys. 85, 7191 (1999).CrossRefGoogle Scholar
Wang, N., Komvopoulos, K., IEEE Trans. Magn. 47 (9), 2277 (2011).CrossRefGoogle Scholar
Marchon, B., Guo, X.-C., Pathem, B.K., Rose, F., Dai, Q., Feliss, N., Schreck, E., Reiner, J., Mosendz, O., Takano, K., Do, H., Burns, J., Saito, Y., IEEE Trans. Magn. 50 (3), 3300607 (2014).CrossRefGoogle Scholar
Peng, J., Sergiienko, A., Mangolini, F., Stallworth, P.E., Greenbaum, S., Carpick, R.W., Carbon 105, 163 (2016).CrossRefGoogle Scholar
Ahmad, A.A., Alsaad, A.M., Bull. Mater. Sci. 30 (4), 301 (2007).CrossRefGoogle Scholar
Rejda, E., Stephan, J., Nguyen, T., Zuckerman, N., Kunkel, G., Cole, D., Seigler, M., Rea, C., “Magnetic Devices with Variable Overcoats,” US Patent 20140177405 (March 8, 2013).Google Scholar
Khamnualthong, N., Siangchaew, K., Phongwanitchaya, S., “Magnetic Head Having a Reader Overcoat with DLC and a Recessed Writer Overcoat without DLC,” US Patent 9,659,587 (November 6, 2015).Google Scholar
Novotny, V., Hajjar, R., “Optical Storage System with a Head Cleaning Mechanism Based on a Position-Controllable Optical Interfacing Surface in an Optical Head,” US Patent 6307832B1 (May 4, 1999).Google Scholar
Kiely, J.D., Jones, P.M., Yang, Y., Brand, J.L., Anaya-Dufresne, M., Fletcher, P.C., Zavaliche, F., Toivola, Y., Duda, J.C., Johnson, M.T., IEEE Trans. Magn. 53 (2), 3300307 (2017).CrossRefGoogle Scholar
Xiaong, S., Wang, N., Smith, R., Li, D., Schreck, E., Dai, Q., Tribol. Lett. 65 (2), 74 (2017).CrossRefGoogle Scholar
Yang, Y., Li, X., Stirniman, M., Yan, X., Zavaliche, F., Wang, H., Huang, J., Tang, H., Jones, P.M., Kiely, J.D., Brand, J.L., IEEE Trans. Magn. 51 (11), 1 (2015).Google Scholar
Raman, V., Gillis, D., Wolter, R., Trans. ASME 122, 444 (2000).CrossRefGoogle Scholar
Jones, P.M., Fan, Z.Z., Ma, X., Wang, H., Tang, H.H., IEEE Trans. Magn. 53 (1), 99 (2017).Google Scholar