Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T02:51:27.259Z Has data issue: false hasContentIssue false

Macromolecular engineering and stimulus response in the design of advanced drug delivery systems

Published online by Cambridge University Press:  31 January 2011

Christine Jérôme
Affiliation:
Center for Education and Research on Macromolecules, University of Liege, B6 Sart-Tilman, B-4000 Liege, Belgium; e-mail [email protected].
Get access

Abstract

Extensive research activity is currently devoted to controlled drug delivery systems, mainly as nano-sized particles. Although biocompatible and (bio)degradable polymers play a key role in this field, their shaping into colloidal particles (e.g., polymeric micelles and nanoparticles) usually requires the proper design of amphiphilic copolymers as effective stabilizers. Strategies for synthesizing these copolymers that preserve the intrinsic properties of the constitutive polymers are discussed in this article. Synthesis of amphiphilic copolymers with a more complex structure and endowed with functionality is also considered, with the purpose of enhancing the performance of the nanocarriers. The focus is increasingly on nanocarriers of the third generation, which resist coalescence and elimination by the immune system, and which are readily incorporated into chosen target cells. The more recent quest is for smart nanocarriers that exhibit the additional capacity of being stimuli-responsive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nishiyama, N., Kataoka, K., Adv. Polym. Sci. 193, 67 (2006).Google Scholar
2.Lee, E.S., Gao, Z., Bae, Y.H., J. Controlled Release 132, 164 (2008)Google Scholar
3.Van Butsele, K., Jérôme, R., Jérôme, C., Polymer 48, 7431 (2007)Google Scholar
4.Jérôme, C., Lecomte, P., Adv. Drug Delivery Rev. 60, 1056 (2008).Google Scholar
5.Lecomte, P., Riva, R., Schmeits, S., Rieger, J., Van Butsele, K., Jérôme, C., Jérôme, R., Macromol. Symp. 240, 157 (2006).Google Scholar
6.Detrembleur, C., Mazza, M., Lou, X., Halleux, O., Lecomte, Ph., Mecerreyes, D., Hedrick, J.L., Jérôme, R., Macromolecules 33, 7751 (2000).Google Scholar
7.Vroman, B., Ferreira, I., Jérôme, C., Jérôme, R., Préat, V., Int. J. Pharm. 344, 88 (2007).Google Scholar
8.Lecomte, P., Riva, R., Jérôme, C., Jérôme, R., Macromol. Rapid Commun. 29, 982 (2008).Google Scholar
9.Grignard, B., Schmeits, S., Riva, R., Detrembleur, C., Lecomte, P., Jérôme, C., Green Chem. 11, 1525 (2009).Google Scholar
10.Riva, R., Schmeits, S., Stoffelbach, F., Jérôme, C., Jérôme, R., Lecomte, P., Chem. Commun. (Camb.) 42, 5334 (2005).Google Scholar
11.Vangeyte, P., Gautier, S., Jerome, R., Colloids Surf., A 242, 203 (2004)Google Scholar
12.Lee, J.H., Lee, H.B., Andrade, J.D., Prog. Polym. Sci. 20, 1043 (1995).Google Scholar
13.Vangeyte, P., Jérôme, R., J. Polym. Sci., Part A: Polym. Chem. 42, 1132 (2004)Google Scholar
14.Rieger, J., Bernaerts, K.V., Du Prez, F.E., Jérôme, R., Jérôme, C., Macromolecules 37, 9738 (2004).Google Scholar
15.Rieger, J., Dubois, P., Jérôme, R., Jérôme, C., Langmuir 22, 7471 (2006).Google Scholar
16.Rieger, J., Van Butsele, K., Lecomte, P., Detrembleur, C., Jérôme, R., Jérôme, C., Chem. Commun. (Camb.) 2, 274 (2005).Google Scholar
17.Riva, R., Schmeits, S., Jérôme, R., Jérôme, C., Lecomte, P., Macromolecules 40, 796 (2007).Google Scholar
18.Vangeyte, P., Leyh, B., Heinrich, M., Grandjean, J., Bourgaux, C., Jérôme, R., Langmuir 20, 8442 (2004).Google Scholar
19.Rieger, J., Passirani, C., Benoît, J.P., Van Butsele, K., Jérôme, R., Jérôme, C., Adv. Funct. Mater. 16, 1506 (2006).Google Scholar
20.Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jérôme, C., Marchand-Brynaert, J., Feron, O., Préat, V., J. Controlled Release 140, 166 (2009).Google Scholar
21.Rieger, J., Stoffelbach, F., Cui, D., Imberty, A., Lameignere, E., Putaux, J., Jérôme, R., Jérôme, C., Auzély-Velty, R., Biomacromolecules 8, 2717 (2007).Google Scholar
22.Rieger, J., Freichels, H., Imberty, A., Putaux, J., Delair, T., Jérôme, C., Auzély-Velty, R., Biomacromolecules 10, 651 (2009).Google Scholar
23.Garinot, M., Fiévez, V., Pourcelle, V., Stoffelbach, F., des Rieux, A., Plapied, L., Theate, Iv., Freichels, H., Jérôme, C., Marchand-Brynaert, J., Schneider, Y., Préat, V., J. Controlled Release 120, 195 (2007).Google Scholar
24.Fievez, V., Plapied, L., des Rieux, A., Pourcelle, V., Freichels, H., Wascotte, V., Vanderhaeghen, M., Jerôme, C., Vanderplasschen, A., Marchand-Brynaert, J., Schneider, Y-J., Préat, V., Eur J. Pharm. Biopharm. 73, 16 (2009).Google Scholar
25.Pourcelle, V., Freichels, H., Stoffelbach, F., Auzély-Velty, R., Jérôme, C., Marchand-Brynaert, J., Biomacromolecules 10, 966 (2009).Google Scholar
26.Torchilin, V.P., Eur. J. Pharm. Biopharm. 71, 431 (2008).Google Scholar
27.Van Butsele, K., Stoffelbach, F., Jérôme, R., Jérôme, C., Macromolecules 39, 5652 (2006).Google Scholar
28.Van Butsele, K., Sibret, P., Fustin, C.A., Gohy, J.F., Passirani, C., Benoit, J.-P., Jérôme, R., Jérôme, C., J. Colloid Interface Sci 329, 235 (2009).Google Scholar
29.Van Butsele, K., Cajot, S., Van Vlierberghe, S., Dubruel, P., Passirani, C., Benoit, J.-P, Jérôme, R., Jérôme, C., Adv. Funct. Mater. 19, 1416 (2009).Google Scholar
30.Van Butsele, K., Fustin, C.A., Gohy, J.F., Jérôme, R., Jérôme, C., Langmuir 25, 107 (2009).Google Scholar
31.Passirani, C., Benoit, J.-P., in Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids, Mahato, R.I., Ed. (CRC Press, FL, 2005), pp. 187230.Google Scholar
32.Van Butsele, K., PhD thesis, University of Liège, Belgium (2008).Google Scholar
33.Rieger, J., Coulembier, O., Dubois, P., Bernaerts, K.V., Du Prez, F.E., Jérôme, R., Jérôme, C., Macromolecules 38, 10650 (2005).Google Scholar