Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T08:45:23.364Z Has data issue: false hasContentIssue false

Limitations on the Use of Surface Doping for Improving High-Temperature Oxidation Resistance

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

For more than 50 years, scientists have studied the “magic dust” of high-temperature oxidation—certain oxygen active or “reactive” elements which, when added to alloys in small quantities, effect profound improvements in their oxidation resistance. In general, high-temperature oxidation resistance is achieved by the oxidation of one or more alloy components to form a dense, stable, slow-growing, external oxide layer, or ’scale” such as α-Cr2O3, α-Al2O3, or SiO2. When added properly, reactive elements have a beneficial effect on the formation and growth of both α-Cr2O3 and α-Al2O3 scales. A standard list of reactive element (RE) effects would include: (1) an improvement in scale adhesion or resistance to spallation, (2) a change in the scale growth mechanism, (3) a reduction in the oxidation rate, related to the change in mechanism, (4) a modification in the scale microstructure, and (5) in the case of alloys that form Cr2O3 scales, an improvement in selective oxidation, meaning that a lower Cr concentration in the alloy is required to form and maintain an external Cr2O3 scale.

Type
Corrosion and Coating
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pfeil, L.B., U.K. Patent No. 459848 (1937) and No. 574088 (1945).Google Scholar
2.Whittle, D.P. and Stringer, J., Philos. Trans. R. Soc. London, Ser. A 295 (1980) p. 309.Google Scholar
3.Stringer, J., Mater. Sci. Eng. A 120 (1989) p. 129.CrossRefGoogle Scholar
4.The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, edited by Lang, E. (Elsevier Applied Science, London, 1989).Google Scholar
5.The Reactive Element Effect on High Temperature Oxidation—After Fifty Years, edited by King, W.E. (Materials Science Forum, Volume 43, Trans Tech Publications, Switzerland, 1989).CrossRefGoogle Scholar
6.Moon, D.P., Mater. Sci. Tech. 5 (1989) p. 754.CrossRefGoogle Scholar
7.Prescott, R. and Graham, M.J., Oxid. Met. 38 (1992) p. 233.CrossRefGoogle Scholar
8.Ikeda, Y., Nii, K., and Yoshihara, K., Trans. Jpn. Inst. Met. 24 (1983) p. 207.Google Scholar
9.Funkenbush, A.W., Smeggil, J.G., and Bornstein, N.S., Met. Trans. 16A (1985) p. 1164.CrossRefGoogle Scholar
10.Smialek, J.L., Met. Trans. 18A (1987) p. 164.CrossRefGoogle Scholar
11.Hou, P.Y. and Stringer, J., Oxid. Met. 38 (1992) p. 323.CrossRefGoogle Scholar
12.Reddy, K.P.R., Smialek, J.L., and Cooper, A.R., Oxid. Met. 17 (1982) p. 429.CrossRefGoogle Scholar
13.Quadakkers, W.J., Holzbrecher, H., Briefs, K.G., and Beske, H., Oxid. Met. 32 (1989) p. 67.CrossRefGoogle Scholar
14.Cotell, C.M., Yurek, G.J., Hussey, R.J., Mitchell, D.F., and Graham, M.J., Oxid. Met. 34 (1990) p. 173, 201.CrossRefGoogle Scholar
15.Lees, D.G. and Johnson, D., Oxid. Met. 38 (1992) p. 217.CrossRefGoogle Scholar
16.Clemens, D., Bongartz, K., Speier, W., Hussey, R.J., and Quadakkers, W.J., Fresenius J. Anal. Chem. 346 (1993) p. 318.CrossRefGoogle Scholar
17.Versaci, R.A., Clemens, D., Quadakkers, W.J., and Hussey, R., Solid State Ionics 59 (1993) p. 235.CrossRefGoogle Scholar
18.Pint, B.A., Martin, J.R., and Hobbs, L.W., Oxid. Met. 39 (1993) p. 167.CrossRefGoogle Scholar
19.Ramanarayanan, T.A., Raghavan, M., and Petkovic-Luton, R., J. Electrochem. Soc. 131 (1984) p. 923.CrossRefGoogle Scholar
20.Przybylski, K. and Yurek, G.J., in Reference 5, p. 1.Google Scholar
21.Patibandla, N., Ramanarayanan, T.A., and Cosandey, F., J. Electrochem. Soc. 138 (1991) p. 2176.CrossRefGoogle Scholar
22.Cotell, C.M., Bennett, M.J., and Garratt-Reed, A.J., in Structure and Properties of Interfaces in Materials, edited by Clark, W.A.T., Dahmen, U., and Briant, C.L. (Mater. Res. Soc. Symp. Proc. 238, Pittsburgh, PA, 1992) p. 439.Google Scholar
23.Czerwinski, F. and Smeltzer, W.W., in Proc. 2nd Int. Conf. on the Microscopy of Oxid., edited by Newcomb, S.B. and Bennett, M.J. (Institute of Metals, London, 1993) p. 119; J. Electrochem. Soc. 140 (1993) p. 1181.Google Scholar
24.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., Mater. High Temp. and J. Amer. Cer. Soc., submitted.Google Scholar
25.Pint, B.A., Garratt-Reed, A.J., and Hobbs, L.W., in Proc. 2nd Int. Conf. on the Microscopy of Oxid., edited by Newcomb, S.B. and Bennett, M.J. (Institute of Metals, London, 1993) p. 463.Google Scholar
26.Pint, B.A. and Hobbs, L.W., Electrochem. Soc. Extended Abs. 93–1 (1993) p. 1707.Google Scholar
27.Bennett, M.J., in High Temperature Corrosion, edited by Rapp, R.A. (NACE, Houston, TX, 1983) p. 145.Google Scholar
28.Bennett, M.J. and Tuson, A.T., in Reference 5, p. 79.Google Scholar
29.Moon, D.P. and Bennett, M.J., Mater. Sci. Forum 43 (1989) p. 269.CrossRefGoogle Scholar
30.Bennett, M.J., Houlton, M.R., and Dearnaley, G., Corros. Sci. 20 (1980) p. 69.CrossRefGoogle Scholar
31.Pivin, J.C, Roques-Carmes, C., Chaumont, J., and Bernas, H., Corros. Sci. 20 (1980), p. 947.CrossRefGoogle Scholar
32.Bennett, M.J., Bishop, H.E., Chalker, P.R., and Tuson, A.T., Corros. Sci. 90 (1987) p. 177.Google Scholar
33.Hampikian, J.M. and Potter, D.I., Oxid. Met. 38 (1992) P. 125, 139.CrossRefGoogle Scholar
34.Jedlinski, J. and Mrowec, S., Mater. Sci. Eng. 87 (1987) p. 281.CrossRefGoogle Scholar
35.Cotell, C.M., PhD thesis, Massachusetts Institute of Technology, 1988.Google Scholar
36.Slater, M., Grant, W.A., and Carter, G., Radial. Effects 82 (1984) p. 239.CrossRefGoogle Scholar
37.Yang, C.H., Welsch, G.E., and Mitchell, T.E., Mater. Sci. Eng. 69 (1985) p. 351.CrossRefGoogle Scholar
38.Hou, P. and Stringer, J., Oxid. Met. 29 (1988) p. 45.CrossRefGoogle Scholar
39.Hampikian, J.M., Devereux, O.F., and Potter, D.I., Mater. Sci. Eng. A 116 (1989) p. 119.CrossRefGoogle Scholar
40.Mrowec, S., Gil, A., and Jedlinski, J., Werk. Korr. 38 (1987) p. 563.CrossRefGoogle Scholar
41.Provenzano, V., Sadananda, K., Louat, N.P., and Reed, J.R., Surf. Coating Technol. 36 (1988) p. 61.CrossRefGoogle Scholar
42.Pint, B.A. and Hobbs, L.W., J. Electrochem. Soc. 141 (1994) p. 2443.CrossRefGoogle Scholar
43.Pint, B.A. and Hobbs, L.W., Oxid. Met. 41 (1994) p. 205.CrossRefGoogle Scholar
44.Jedlinski, J., Godlewski, K., and Mrowec, S., Mater. Sci. Eng. A 121 (1989) p. 539.CrossRefGoogle Scholar
45.Smeggil, J.G. and Shuskus, A.J., J. Vac. Sci. Technol. A 4 (1986) p. 2577.CrossRefGoogle Scholar
46.Jedlinski, J., Borchardt, G., and Mrowec, S., Werk. Korr. 41 (1990) p. 701.CrossRefGoogle Scholar
47.Quadakkers, W.J., Jedlinski, J., Schmidt, K., Krasovec, M., Borchardt, G., and Nickel, H., Appl. Surf. Sci. 47 (1991) p. 261.CrossRefGoogle Scholar
48.Pint, B.A. and Hobbs, L.W., to be presented at the 1994 MRS Fall Meeting, Symposium L.Google Scholar
49.Golightly, F.A., Stott, F.H., and Wood, G.C., Electrochem. Soc. Extended Abs. 10 (1976) p. 163.Google Scholar
50.Hussey, R.J., Papaiacovou, P., Shen, J., Mitchell, D.F., and Graham, M.J., Mater. Sci. Eng. A 120 (1989) p. 147.CrossRefGoogle Scholar
51.Ecer, G.M., Singh, R.B., and Meier, G.H., Oxid. Met. 18 (1982) p. 55.CrossRefGoogle Scholar
52.Landkof, M., Levy, A.V., Boone, D.H., Gray, R., and Yaniv, E., Corrosion 41 (1985) p. 344.CrossRefGoogle Scholar
53.Hou, P.Y. and Stringer, J., J. Electrochem. Soc. 134 (1987) p. 1836; 138 (1991) p. 327; Mater. Sci. Eng. 87 (1987) p. 295.CrossRefGoogle Scholar
54.Chadwick, A.T. and Taylor, R.I., Solid State Ionics 12 (1984) p. 343.CrossRefGoogle Scholar
55.Hou, P.Y., Shui, Z.R., Chuang, G.Y., and Stringer, J., J. Electrochem. Soc. 139 (1992) p. 1119.CrossRefGoogle Scholar
56.Biegun, T., Danielewski, M., and Skrzypek, Z., Oxid. Met. 38 (1992) p. 207.CrossRefGoogle Scholar
57.Lobb, R.C. and Bennett, M.J., Oxid. Met. 35 (1991) p. 35.CrossRefGoogle Scholar
58.Pieraggi, B. and Rapp, R.A., J. Electrochem. Soc. 140 (1993) p. 2844.CrossRefGoogle Scholar
59.Hou, P.Y., Brown, I.G., and Stringer, J., Nucl. Instrum. Methods B59/60 (1991) p. 1345.CrossRefGoogle Scholar
60.Stringer, J. and Wright, I.G., Oxid. Met. 5 (1972) p. 59.CrossRefGoogle Scholar
61.Kim, K.Y., Jun, J.H., and Jung, H.G., Oxid. Met. 40 (1993) p. 321.CrossRefGoogle Scholar
62.Tu, D.C., Lin, C.C., Liao, S.J., and Chou, J.C., J. Vac. Sci. Technol. A 4 (1986) p. 2601.CrossRefGoogle Scholar
63.Bianco, R., Rapp, R.A., and Smialek, J.L., J. Electrochem. Soc. 140 (1993) p. 1181, 1191.CrossRefGoogle Scholar
64.Lih, W., Chang, E., Wu, B.C., and Chao, C.H., Oxid. Met. 36 (1991) p. 221.Google Scholar
65.Sun, J.H., Chang, E., Chao, C.H., and Cheng, M.J., Oxid. Met. 40 (1993) p. 465.CrossRefGoogle Scholar
66.Kuenzly, J.D. and Douglass, D.L., Oxid. Met. 8 (1974) p. 139.CrossRefGoogle Scholar