Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T08:50:43.508Z Has data issue: false hasContentIssue false

Layered oxides as positive electrode materials for Na-ion batteries

Published online by Cambridge University Press:  09 May 2014

Kei Kubota
Affiliation:
Research Institute for Science and Technology, Tokyo University of Science, Japan; Unit of ESICB, Kyoto University, Japan; [email protected]
Naoaki Yabuuchi
Affiliation:
Research Institute for Science and Technology, Tokyo University of Science, Japan; Unit of ESICB, Kyoto University, Japan; [email protected]
Hiroaki Yoshida
Affiliation:
Department of Chemical Sciences and Technology, Tokyo University of Science, Japan; [email protected]
Mouad Dahbi
Affiliation:
Department of Applied Chemistry, Tokyo University of Science, Japan; Unit of ESICB, Kyoto University, Japan; [email protected]
Shinichi Komaba
Affiliation:
Department of Applied Chemistry, Tokyo University of Science, Japan; Unit of ESICB, Kyoto University, Japan; [email protected]
Get access

Abstract

Considering the need for designing better batteries to meet the rapidly growing demand for large-scale energy storage applications, an aspect of primary importance for battery materials is elemental abundance. To achieve sustainable energy development, we must reconsider the feasibility of a sustainable lithium supply, which is essential for lithium(-ion) batteries. Lithium is widely distributed in the Earth, but is not regarded as an abundant element. Therefore, widespread use of large-scale lithium batteries would be inevitably restricted. Sodium(-ion) batteries are thus promising candidates for large-scale applications because sodium is the most advantageous next to lithium considering its atomic weight, standard potential, and natural abundance. Rechargeable sodium-ion batteries consist of two different sodium insertion materials similar to Li-ion batteries. Sodium insertion materials, especially layered oxides, have been studied since the early 1980s, but not extensively for energy storage devices due to the expanded interest in lithium insertion materials in the 1990s. In recent years, materials researchers have again been extensively exploring new sodium insertion materials to enhance battery performance. This article reviews recent advancements and trends in layered sodium transition metal oxides as positive electrode materials for Na-ion batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dunn, B., Kamath, H., Tarascon, J.M., Science 334, 928 (2011).Google Scholar
Tarascon, J.M., Nat. Chem. 2, 510 (2010).Google Scholar
Carmichael, R.S., Practical Handbook of Physical Properties of Rocks and Minerals (CRC Press, Boca Raton, 1989).Google Scholar
Slater, M.D., Kim, D., Lee, E., Johnson, C.S., Adv. Funct. Mater. 23, 947 (2013).Google Scholar
Oshima, T., Kajita, M., Okuno, A., Int. J. Appl. Ceram. Technol. 1, 269 (2004).CrossRefGoogle Scholar
Bones, R.J., Teagle, D.A., Brooker, S.D., Cullen, F.L., J. Electrochem. Soc. 136, 1274 (1989).Google Scholar
Whittingham, M.S., Science 192, 1126 (1976).CrossRefGoogle Scholar
Whittingham, M.S., Prog. Solid State Chem. 12, 41 (1978).Google Scholar
Newman, G.H., Klemann, L.P., J. Electrochem. Soc. 127, 2097 (1980).CrossRefGoogle Scholar
Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).Google Scholar
Delmas, C., Braconnier, J.J., Fouassier, C., Hagenmuller, P., Solid State Ionics 3–4, 165 (1981).Google Scholar
Abraham, K.M., Solid State Ionics 7, 199 (1982).Google Scholar
Delmas, C., Braconnier, J.J., Maazaz, A., Hagenmuller, P., Rev. Chim. Miner. 19, 343 (1982).Google Scholar
Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K., Adv. Funct. Mater. 21, 3859 (2011).Google Scholar
Stevens, D.A., Dahn, J.R., J. Electrochem. Soc. 147, 1271 (2000).CrossRefGoogle Scholar
Alcantara, R., Lavela, P., Ortiz, G.F., Tirado, J.L., Electrochem. Solid-State Lett. 8, A222 (2005).Google Scholar
Delmas, C., Fouassier, C., Hagenmuller, P., Physica B+C 99, 81 (1980).Google Scholar
Shannon, R., Acta Crystallogr. Sect. A: Found. 32, 751 (1976).Google Scholar
Mather, G.C., Dussarrat, C., Etourneau, J., West, A.R., J. Mater. Chem. 10, 2219 (2000).Google Scholar
Mendiboure, A., Delmas, C., Hagenmuller, P., J. Solid State Chem. 57, 323 (1985).Google Scholar
Stoyanova, R., Carlier, D., Sendova-Vassileva, M., Yoncheva, M., Zhecheva, E., Nihtianova, D., Delmas, C., J. Solid State Chem. 183, 1372 (2010).Google Scholar
Paulsen, J.M., Dahn, J.R., Solid State Ionics 126, 3 (1999).Google Scholar
Lu, Z.H., Dahn, J.R., J. Electrochem. Soc. 148, A710 (2001).CrossRefGoogle Scholar
Lu, Z.H., Dahn, J.R., J. Electrochem. Soc. 148, A1225 (2001).Google Scholar
Delmas, C., Braconnier, J.J., Hagenmuller, P., Mater. Res. Bull. 17, 117 (1982).Google Scholar
Delmas, C., Saadoune, I., Solid State Ionics 53, 370 (1992).CrossRefGoogle Scholar
Ohzuku, T., Ueda, A., Kouguchi, M., J. Electrochem. Soc. 142, 4033 (1995).CrossRefGoogle Scholar
Ohzuku, T., Makimura, Y., Chem. Lett. 30, 642 (2001).CrossRefGoogle Scholar
Yabuuchi, N., Ohzuku, T., J. Power Sources 119, 171 (2003).CrossRefGoogle Scholar
Maazaz, A., Delmas, C., Hagenmuller, P., J. Inclusion Phenom. Macrocyclic Chem. 1, 45 (1983).Google Scholar
Didier, C., Guignard, M., Denage, C., Szajwaj, O., Ito, S., Saadoune, I., Darriet, J., Delmas, C., Electrochem. Solid-State Lett. 14, A75 (2011).Google Scholar
Braconnier, J.J., Delmas, C., Hagenmuller, P., Mater. Res. Bull. 17, 993 (1982).Google Scholar
Komaba, S., Takei, C., Nakayama, T., Ogata, A., Yabuuchi, N., Electrochem. Commun. 12, 355 (2010).CrossRefGoogle Scholar
Ma, X.H., Chen, H.L., Ceder, G., J. Electrochem. Soc. 158, A1307 (2011).Google Scholar
Takeda, Y., Nakahara, K., Nishijima, M., Imanishi, N., Yamamoto, O., Takano, M., Kanno, R., Mater. Res. Bull. 29, 659 (1994).CrossRefGoogle Scholar
Zhao, J., Zhao, L.W., Dimov, N., Okada, S., Nishida, T., J. Electrochem. Soc. 160, A3077 (2013).Google Scholar
Yabuuchi, N., Yoshida, H., Komaba, S., Electrochemistry 80, 716 (2012).Google Scholar
Vassilaras, P., Ma, X.H., Li, X., Ceder, G., J. Electrochem. Soc. 160, A207 (2013).Google Scholar
Yu, H., Guo, S., Zhu, Y., Ishida, M., Zhou, H., Chem. Commun. 50, 457 (2014).Google Scholar
Okada, S., Yamaki, J.-I., Iron-Based Rare-Metal-Free Cathodes, in Lithium Ion Rechargeable Batteries (Wiley-VCH Verlag GmbH, Germany, 2010), p. 53.Google Scholar
Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., Nakai, I., Inorg. Chem. 51, 6211 (2012).Google Scholar
Saadoune, I., Maazaz, A., Menetrier, M., Delmas, C., J. Solid State Chem. 122, 111 (1996).Google Scholar
Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., Komaba, S., Nat. Mater. 11, 512 (2012).CrossRefGoogle Scholar
Yoshida, H., Yabuuchi, N., Komaba, S., Electrochem. Commun. 34, 60 (2013).CrossRefGoogle Scholar
Vassilaras, P., Toumar, A.J., Ceder, G., Electrochem. Commun. 38, 79 (2014).CrossRefGoogle Scholar
Kim, D., Lee, E., Slater, M., Lu, W.Q., Rood, S., Johnson, C.S., Electrochem. Commun. 18, 66 (2012).CrossRefGoogle Scholar
Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., Komaba, S., J. Electrochem. Soc. 160, A3131 (2013).Google Scholar
Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J.M., Prakash, A.S., Chem. Mater. 24, 1846 (2012).CrossRefGoogle Scholar
Tamaru, M., Wang, X.F., Okubo, M., Yamada, A., Electrochem. Commun. 33, 23 (2013).CrossRefGoogle Scholar
Jorgensen, J.D., Avdeev, M., Hinks, D.G., Burley, J.C., Short, S., Phys. Rev. B: Condens. Matter 68, 214517 (2003).Google Scholar
Ado, K., Tabuchi, M., Kobayashi, H., Kageyama, H., Nakamura, O., Inaba, Y., Kanno, R., Takagi, M., Takeda, Y., J. Electrochem. Soc. 144, L177 (1997).Google Scholar
Kim, S., Ma, X.H., Ong, S.P., Ceder, G., Phys. Chem. Chem. Phys. 14, 15571 (2012).CrossRefGoogle Scholar
Braconnier, J.J., Delmas, C., Fouassier, C., Hagenmuller, P., Mater. Res. Bull. 15, 1797 (1980).CrossRefGoogle Scholar
Paulsen, J.M., Thomas, C.L., Dahn, J.R., J. Electrochem. Soc. 147, 861 (2000).Google Scholar
Matsumura, T., Sonoyama, N., Kanno, R., Solid State Ionics 161, 31 (2003).Google Scholar
Komaba, S., Yoshii, K., Ogata, A., Nakai, I., Electrochim. Acta 54, 2353 (2009).Google Scholar
Komaba, S., Croguennec, L., Tournadre, F., Willmann, P., Delmas, C., J. Phys. Chem. C 117, 3264 (2013).Google Scholar
Berthelot, R., Carlier, D., Delmas, C., Nat. Mater. 10, 74 (2011).CrossRefGoogle Scholar
Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., Delmas, C., Dalton Trans. 40, 9306 (2011).Google Scholar
Wang, X.F., Tamaru, M., Okubo, M., Yamada, A., J. Phys. Chem. C 117, 15545 (2013).CrossRefGoogle Scholar
de Boisse, B.M., Carlier, D., Guignard, M., Delmas, C., J. Electrochem. Soc. 160, A569 (2013).Google Scholar
Buchholz, D., Moretti, A., Kloepsch, R., Nowak, S., Siozios, V., Winter, M., Passerini, S., Chem. Mater. 25, 142 (2013).Google Scholar
Kim, D., Kang, S.-H., Slater, M., Rood, S., Vaughey, J.T., Karan, N., Balasubramanian, M., Johnson, C.S., Adv. Energy Mater. 1, 333 (2011).Google Scholar
Yoshida, H., Yabuuchi, N., Kubota, K., Ikeuchi, I., Garsuch, A., Schulz-Dobrick, M., Komaba, S., Chem. Commun. 50, 3677 (2014).Google Scholar
Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaim, E., Delmas, C., Nat. Mater. 12, 74 (2013).CrossRefGoogle Scholar
Caballero, A., Hernan, L., Morales, J., Sanchez, L., Pena, J.S., Aranda, M.A.G., J. Mater. Chem. 12, 1142 (2002).Google Scholar
Delmas, C., Maazaz, A., Fouassier, C., Reau, J.M., Hagenmuller, P., Mater. Res. Bull. 14, 329 (1979).Google Scholar
Lee, D.H., Xu, J., Meng, Y.S., Phys. Chem. Chem. Phys. 15, 3304 (2013).Google Scholar
Singh, G., Acebedo, B., Cabanas, M.C., Shanmukaraj, D., Armand, M., Rojo, T., Electrochem. Commun. 37, 61 (2013).Google Scholar
Momma, K., Izumi, F., J. Appl. Crystallogr. 41, 653 (2008).Google Scholar