Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T08:44:18.216Z Has data issue: false hasContentIssue false

Large-area high-quality single crystal diamond

Published online by Cambridge University Press:  12 June 2014

Matthias Schreck
Affiliation:
Institute of Physics, University of Augsburg, Germany; [email protected]
Jes Asmussen
Affiliation:
Michigan State University, USA; [email protected]
Shinichi Shikata
Affiliation:
National Institute of Advanced Industrial Science and Technology, Japan; [email protected]
Jean-Charles Arnault
Affiliation:
CEA LIST, France; [email protected]
Naoji Fujimori
Affiliation:
EDP Corporation, Japan; [email protected]
Get access

Abstract

Diamond offers a unique combination of extreme physical properties. For many technological applications, diamond samples of the highest crystal quality are required to utilize the ultimate potential of the material. Specifically, grain boundaries, as in polycrystalline films, have to be avoided. In this article, the two major current approaches of synthesizing single crystal diamond by chemical vapor deposition are described. In homoepitaxy, high gas pressure and high power density microwave discharges facilitating growth rates above 50 µm/h form the basis for the deposition of mm-thick single crystal samples. Cloning and tiling followed by homoepitaxial overgrowth are promising novel concepts aimed at an increase in the lateral dimensions. Heteroepitaxial deposition on large-area single crystals of a foreign material represents a second alternative approach. The state of the art for both concepts is summarized, and current as well as potential future applications are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spitsyn, B.V., Aleksenko, A.E., Prot. Met. Phys. Chem. Surf. 43, 415 (2007).Google Scholar
Nebel, C.E., in Thin-Film Diamond I, Nebel, C.E., Ristein, J., Eds. (Elsevier, Amsterdam, 2003), p. 261.CrossRefGoogle Scholar
Isberg, J., Hammersberg, J., Twitchen, D.J., Whitehead, A.J., Diam. Relat. Mater. 13, 320 (2004).CrossRefGoogle Scholar
Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A., Science 297, 1670 (2002).CrossRefGoogle Scholar
Nesladek, M., Bogdan, A., Deferme, W., Tranchant, N., Bergonzo, P., Diam. Relat. Mater. 17, 1235 (2008).CrossRefGoogle Scholar
Berdermann, E., Pomorski, M., de Boer, W., Ciobanu, M., Dunst, S., Grah, C., Kiš, M., Koenig, W., Lange, W., Lohmann, W., Lovrincic, R., Moritz, P., Morse, J., Mueller, S., Pucci, A., Schreck, M., Rahman, S., Traeger, M., Diam. Relat. Mater. 19, 358 (2010).CrossRefGoogle Scholar
Bachmann, P.K., in Properties and Growth of Diamond, Davies, G., Ed. (Inspec Publications, London, UK, 1994), p. 364.Google Scholar
Kamo, M., Yurimoto, H., Sato, Y., Appl. Surf. Sci. 33/34, 553 (1988).CrossRefGoogle Scholar
Teraji, T., Phys. Status Solidi A 203, 3324 (2006).CrossRefGoogle Scholar
McCauley, T.S., Vohra, Y.K., Appl. Phys. Lett. 66, 1486 (1995).CrossRefGoogle Scholar
Yan, C.-S., Vohra, Y.K., Mao, H.-K., Hemley, R.J., Proc. Natl. Acad. Sci. U.S.A. 99, 12523 (2002).CrossRefGoogle Scholar
Williams, O.A., Jackman, R., Diam. Relat. Mater. 13, 557 (2004).CrossRefGoogle Scholar
Mokuno, Y., Chayahara, A., Soda, Y., Horino, Y., Fujimori, N., Diam. Relat. Mater. 14, 1743 (2005).CrossRefGoogle Scholar
Tallaire, A., Achard, J., Silva, F., Sussmann, R.S., Gicquel, A., Diam. Relat. Mater. 14, 249 (2005).CrossRefGoogle Scholar
Sternschulte, H., Bauer, T., Schreck, M., Stritzker, B., Diam. Relat. Mater. 15, 542 (2006).CrossRefGoogle Scholar
Linares, R., Doering, P., Diam. Relat. Mater. 8, 909 (1999).CrossRefGoogle Scholar
Teraji, T., Hamada, M., Wada, H., Yamamoto, M., Arima, K., Ito, T., Diam. Relat. Mater. 14, 255 (2005).CrossRefGoogle Scholar
Teraji, T., Hamada, M., Wada, H., Yamamoto, M., Ito, T., Diam. Relat. Mater. 14, 1747 (2005).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Mokuno, Y., Soda, Y., Horino, Y., Fujimori, N., Diam. Relat. Mater. 15, 1395 (2006).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Mokuno, Y., Shikata, S., Diam. Relat. Mater. 17, 494 (2008).CrossRefGoogle Scholar
Mokuno, Y., Chayahara, A., Yamada, H., Diam. Relat. Mater. 17, 415 (2008).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Mokuno, Y., Shikata, S., Diam. Relat. Mater. 17, 1062 (2008).CrossRefGoogle Scholar
Bauer, T., Schreck, M., Sternschulte, H., Stritzker, B., Diam. Relat. Mater. 14, 266 (2005).CrossRefGoogle Scholar
Silva, F., Bonnin, X., Achard, J., Brinza, O., Michau, A., Gicquel, A., J. Cryst. Growth 310, 187 (2008).CrossRefGoogle Scholar
Hemawan, K.W., Grotjohn, T.A., Reinhard, D.K., Asmussen, J., Diam. Relat. Mater. 19, 1446 (2010).CrossRefGoogle Scholar
Gu, Y., Lu, J., Grotjohn, T., Schuelke, T., Asmussen, J., Diam. Relat. Mater. 24, 210 (2012).CrossRefGoogle Scholar
Lu, J., Gu, Y., Grotjohn, T.A., Schuelke, T., Asmussen, J., Diam. Relat. Mater. 37, 17 (2013).CrossRefGoogle Scholar
Liang, Q., Chin, C.Y., Lai, J., Yan, C.-S, Meng, Y., Mao, H.-K, Hemley, R.J., Appl. Phys. Lett. 94, 024103 (2009).CrossRefGoogle Scholar
Liang, Q., Yan, C.-S, Meng, Y., Lai, J., Krasnicki, S., Mao, H.-K, Hemley, R.J., Diam. Relat. Mater. 18, 698 (2009).CrossRefGoogle Scholar
Silva, F., Achard, J., Brinza, O., Bonnin, X., Hassouni, K., Anthonis, A., De Corte, K., Barjon, J., Diam. Relat. Mater. 18, 683 (2009).CrossRefGoogle Scholar
Harris, S.J., Goodwin, D.G., J. Phys. Chem. 97, 23 (1993).CrossRefGoogle Scholar
Müller-Sebert, W., Wörner, E., Fuchs, F., Wild, C., Koidl, P., Appl. Phys. Lett. 68, 759 (1996).CrossRefGoogle Scholar
Secroun, A., Brinza, O., Tardieu, A., Achard, J., Silva, F., Bonnin, X., De Corte, K., Anthonis, A., Newton, M.E., Ristein, J., Geithner, P., Gicquel, A., Phys. Status Solidi A 204, 4298 (2007).CrossRefGoogle Scholar
Tallaire, A., Rond, C., Bénédic, F., Brinza, O., Achard, J., Silva, F., Gicquel, A., Phys. Status Solidi A 208, 2028 (2011).CrossRefGoogle Scholar
Butler, J.E., Woodin, R.L., in Thin Film Diamond, Lettington, A., Steeds, J.W., Eds. (Chapman & Hall, London, 1994), p.15.CrossRefGoogle Scholar
Asmussen, J., Grotjohn, T.A., Schuelke, T., Becker, M.F., Yaran, M.K., King, D.J., Wicklein, S., Reinhard, D.K., Appl. Phys. Lett. 93, 031502 (2008).CrossRefGoogle Scholar
Kuo, K.P., “Microwave Assisted Plasma CVD of Diamond Film Using Thermal-Like Plasma Discharges,” PhD dissertation, Michigan State University (1997).Google Scholar
Muehle, M., Becker, M.F., Schuelke, T., Asmussen, J., Diam. Relat. Mater. 42, 8 (2014).CrossRefGoogle Scholar
Mokuno, Y., Chayahara, A., Yamada, H., Tsubouchi, N., Diam. Relat. Mater. 18, 1258 (2009).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Umezawa, H., Tsubouchi, N., Mokuno, Y., Shikata, S., Diam. Relat. Mater. 24, 29 (2012).CrossRefGoogle Scholar
Parikh, N.R., Hunn, J.D., McGucken, E., Swanson, M.L., White, C.W., Rudder, R.A., Malta, D.P., Posthill, J.B., Markunas, R.J., Appl. Phys. Lett. 61, 3124 (1992).CrossRefGoogle Scholar
Janssen, G., Giling, L.J., Diam. Relat. Mater. 4, 1025 (1995).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Mokuno, Y., Umezawa, H., Shikata, S., Fujimori, N., Appl. Phys. Express 3, 051301 (2010).CrossRefGoogle Scholar
Yamada, H., Chayahara, A., Mokuno, Y., Tsubouchi, N., Shikata, S., Diam. Relat. Mater. 33, 27 (2013).CrossRefGoogle Scholar
Umezawa, H., Kato, Y., Shikata, S., Appl. Phys. Express 6, 011302 (2013).CrossRefGoogle Scholar
Achard, J., Silva, F., Brinza, O., Bonnin, X., Mille, V., Issaoui, R., Kasu, M., Gicquel, A., Phys. Status Solidi A 206, 1949 (2009).CrossRefGoogle Scholar
Umezawa, H., Kato, Y., Watanabe, H., Omer, A.M.M., Yamaguchi, H., Shikata, S., Diam. Relat. Mater. 20, 523 (2011).CrossRefGoogle Scholar
Sumiya, H., Toda, N., Satoh, S., J. Cryst. Growth 237–239, 1281 (2002).CrossRefGoogle Scholar
Friel, I., Clewes, S.L., Dhillon, H.K., Perkins, N., Twitschen, D.J., Scarsbrook, G.A., Diam. Relat. Mater. 18, 808 (2009).CrossRefGoogle Scholar
Kato, Y., Umezawa, H., Shikata, S., Touge, M., Appl. Phys. Express 6, 025506 (2013).CrossRefGoogle Scholar
Tachibana, T., Yokota, Y., Kobashi, K., Shintani, Y., J. Appl. Phys. 82, 4327 (1997).CrossRefGoogle Scholar
Zhu, W., Yang, P.C., Glass, J.T., Appl. Phys. Lett. 63, 1640 (1993).CrossRefGoogle Scholar
Liu, W., Tucker, D.A., Yang, P. C., Glass, J.T., J. Appl. Phys. 78, 1291 (1995).CrossRefGoogle Scholar
Yugo, S., Kanai, T., Kimura, T., Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
Schreck, M., Baur, T., Stritzker, B., Diam. Relat. Mater. 4, 553 (1995).CrossRefGoogle Scholar
Arnault, J.C., Girard, H.A., “Diamond Nucleation and Seeding Techniques: Two Complementary Strategies for Growth of Ultra-Thin Diamond Films,” in Nanodiamond (RSC Nanoscience and Nanotechnology 31), O.A. Williams, Ed. (Cambridge University Press, Royal Society of Chemistry, UK, 2014), p. 221.Google Scholar
Jiang, X., Klages, C.P., Zachai, R., Hartweg, M., Füsser, H.-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
Stoner, B.R., Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
Ohtsuka, K., Suzuki, K., Sawabe, A., Inuzuka, T., Jpn. J. Appl. Phys. 35, L1072 (1996).CrossRefGoogle Scholar
Schreck, M., Roll, H., Stritzker, B., Appl. Phys. Lett. 74, 650 (1999).CrossRefGoogle Scholar
Schreck, M., Heteroepitaxial Growth in CVD Diamond for Electronic Devices and Sensors, Sussmann, R.S., Ed. (Wiley, NY, 2009), p. 125.CrossRefGoogle Scholar
Arnault, J.C., Surf. Rev. Lett. 10, 127 (2003).CrossRefGoogle Scholar
Wittorf, D., Jäger, W., Dieker, C., Flöter, A., Güttler, H., Diam. Relat. Mater. 9, 1696 (2000).CrossRefGoogle Scholar
Schreck, M., Hörmann, F., Roll, H., Bauer, T., Stritzker, B., New Diam. Front. Carbon Technol. 11, 189 (2001).Google Scholar
Schreck, M., Bauer, T., Gsell, S., Hörmann, F., Bielefeldt, H., Stritzker, B., Diam. Relat. Mater. 12, 262 (2003).CrossRefGoogle Scholar
Golding, B., Bednarski-Meinke, C., Dai, Z., Diam. Relat. Mater. 13, 545 (2004).CrossRefGoogle Scholar
Chavanne, A., Barjon, J., Vilquin, B., Arabski, J., Arnault, J.C., Diam. Relat. Mater. 22, 52 (2012).CrossRefGoogle Scholar
Brescia, R., Schreck, M., Gsell, S., Fischer, M., Stritzker, B., Diam. Relat. Mater. 17, 1045 (2008).CrossRefGoogle Scholar
Vaissière, N., Saada, S., Bouttemy, M., Etcheberry, A., Bergonzo, P., Arnault, J.C., Diam. Relat. Mater. 36, 16 (2013).CrossRefGoogle Scholar
Kono, S., Shiraishi, M., Plusnin, N.I., Goto, T., Ikejima, Y., Abukawa, T., Schimomura, M., Dai, Z., Bernarski-Meinke, C., Golding, B., New Diam. Front. Carbon Technol. 15, 363 (2005).Google Scholar
Gsell, S., Berner, S., Brugger, T., Schreck, M., Brescia, R., Fischer, M., Greber, T., Osterwalder, J., Stritzker, B., Diam. Relat. Mater. 17, 1029 (2008).CrossRefGoogle Scholar
Hörmann, F., Schreck, M., Stritzker, B., Diam. Relat. Mater. 10, 1617 (2001).CrossRefGoogle Scholar
Schreck, M., Schury, A., Hörmann, F., Roll, H., Stritzker, B., J. Appl. Phys. 91, 676 (2002).CrossRefGoogle Scholar
Saito, T., Tsuruga, S., Ohya, N., Kusakabe, K., Morooka, S., Maeda, H., Sawabe, A., Suzuki, K., Diam. Relat. Mater. 7, 1381 (1998).CrossRefGoogle Scholar
Bednarski, C., Dai, Z., Li, A.-P., Golding, B., Diam. Relat. Mater. 12, 241 (2003).CrossRefGoogle Scholar
Gsell, S., Bauer, T., Goldfuß, J., Schreck, M., Stritzker, B., Appl. Phys. Lett. 84, 4541 (2004).CrossRefGoogle Scholar
Fischer, M., Gsell, S., Schreck, M., Brescia, R., Stritzker, B., Diam. Relat. Mater. 17, 1035 (2008).CrossRefGoogle Scholar
Fischer, M., Brescia, R., Gsell, S., Schreck, M., Brugger, T., Greber, T., Osterwalder, J., Stritzker, B., J. Appl. Phys. 104, 123531 (2008).CrossRefGoogle Scholar
Stehl, C., Fischer, M., Gsell, S., Berdermann, E., Rahman, M.S., Traeger, M., Klein, O., Schreck, M., Appl. Phys. Lett. 103 151905 (2013).CrossRefGoogle Scholar
Balmer, R.S., Brandon, J.R., Clewes, S.L., Dhillon, H.K., Dodson, J.M., Friel, I., Inglis, P.N., Madgwick, T.D., Markham, M.L., Mollart, T.P., Perkins, N., Scarsbrook, G.A., Twitchen, D.J., Whitehead, A.J., Wilman, J.J., Woollard, S.M., J. Phys.: Condens. Matter 21, 364221 (2009).Google Scholar
Ando, Y., Kamano, T., Suzuki, K., Sawabe, A., Jpn. J. Appl. Phys. 51, 090101 (2012).CrossRefGoogle Scholar
Mandapaka, A.K., Ghebremedhin, A., Patyal, B., Marinelli, M., Prestopino, G., Verona, C., Verona-Rinati, G., Med. Phys. 40, 121702 (2013).CrossRefGoogle Scholar
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J., Nat. Mater. 8, 383 (2009).CrossRefGoogle Scholar
Flanagan, J.W., Arinaga, M., Fukuma, H., Ikeda, H., Proceedings of IBIC2012, Tsukuba, Japan, TUPB74.Google Scholar
Warren, B.E., X-ray Diffraction (Dover Publications, New York, 1990).Google Scholar
Fischer, M., Freund, A.K., Gsell, S., Schreck, M., Courtois, P., Stehl, C., Borchert, G., Ofner, A., Skoulatos, M., Andersen, K.H., Diam. Relat. Mater. 37, 41 (2013).CrossRefGoogle Scholar