Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:01:43.297Z Has data issue: false hasContentIssue false

Iron Sulfide for Photovoltaics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In recent years, iron sulfide (FeS2), otherwise known as pyrite, has received some attention as a possible candidate for thin-film photovoltaic applications. This interest stems in part from the fact that it has a relatively large absorption coefficient of α > 105 cm−1 for photon energies larger than about 1.3 eV (see Figure 1), such that a thin layer of less than 1,000 Å should effectively absorb the visible part of the solar spectrum. The bandgap of pyrite of 0.95 eV is probably on the borderline of what might still be considered acceptable for a high-efficiency single-junction device, but can be considered ideal in combination with a 1.8 eV material for tandem structures. Another important advantage of this compound semiconductor is that it is composed of cheap, abundant, and non-toxic elements, the latter being of particular importance in times of growing environmental consciousness.

Pyrite is a naturally occurring mineral (also known as “fool's gold” because of its golden color) which shows both n- and p-type conduction. This could indicate possible electronic viability of this material. The study of synthetic crystals has been severely impeded by the fact that pyrite undergoes a peritectic decomposition into the more stable FeS and liquid sulfur at 743°C and that therefore the melt growth of high-purity large single-crystalline material is not possible. Nevertheless, it has been shown that polycrystalline pyrite layers could be prepared with different thin-film preparation techniques (see Table I), such that in principle a cost-effective large-scale application could be envisaged.

Type
Materials for Photovoltaics
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ennaoui, A. and Tributsch, H., Sol. Cells 1 (1984) p. 197.CrossRefGoogle Scholar
2.Ferrer, I.J., Nerskaia, D.M., de las Heras, C., and Sánchez, C., Solid State Commun. 74 (9) (1990) p. 913; Thin Solid Films 199 (1991) p. 259.CrossRefGoogle Scholar
3.Shuey, R.T., Semiconducting Ore Minerals, Developments in Economic Geology No. 4 (Elsevier, Amsterdam, 1975) p. 304.Google Scholar
4.Bullet, D.W., J. Phys. C 15 (1982) p. 6163.Google Scholar
5.Bittner, J., Jenaer Zeiss-Jahrbuch (1950) p. 177.Google Scholar
6.Sugaki, A., Am. Mineralogist 66 (1981) p. 398.Google Scholar
7.Bouchard, R.J., J. Cryst. Growth 2 (1968) p. 40.CrossRefGoogle Scholar
8.Schieck, R., Hartmann, A., Fiechter, S., Könenkamp, R., and Wetzel, H., J. Mater. Res. 5 (7) (1990) p. 1567.CrossRefGoogle Scholar
9.Blenk, O., Bucher, E., and Willeke, G., Appl. Phys. Lett. (1993) in press.Google Scholar
10.Blenk, O., Bucher, E., and Willeke, G., Proceedings of the 11th EC. Photovoltaic Solar Energy Conference Montreux (1992) p. 947.Google Scholar
11.Braun, F., Pogg. Ann. CLIII (1874) p. 556.Google Scholar
12.Schleede, A. and Buggisch, H., Z. Anorg. Chem. 161 (1927) p. 85.CrossRefGoogle Scholar
13.Wagner, S., personal communication (1992).Google Scholar
14.Bucher, E., personal communication (1992).Google Scholar
15.Jaegermann, W. and Tributsch, H., J. Appl. Electrochem. 13 (1983) p. 743.CrossRefGoogle Scholar
16.Ennaoui, A., Fiechter, S., Jaegermann, W., and Tributsch, H., J. Elcctrochem. Soc. 133 (1) (1986) p. 97.CrossRefGoogle Scholar
17.Ennaoui, A., Höpfner, C., Ellmer, K., Fiechter, S., and Tributsch, H., Proceedings of the 11th EC. Photovoltaic Solar Energy Conference Montreux (1992) p. 935.Google Scholar
18.Ennaoui, A., Schlichthörl, G., Fiechter, S., and Tributsch, H., Sol. En. Mater. Sol. Cells 25 (1992) p. 169.CrossRefGoogle Scholar
19.Kaum, T.D., Duoba, M.J., Johil, W.P., Luong, V., Mrazek, F.C., Palkon, D.J., and Simon, D.R., 26th IECEC (1991) p. 417.Google Scholar
20.Chongyang, L., Pettenkofer, C., and Tributsch, H., Surf. Sci. 204 (1988) p. 537.CrossRefGoogle Scholar
21.Li, X-P., Alonso-Vante, N., and Tributsch, H., J. Electroanal. Chem. 242 (1988) p. 255.CrossRefGoogle Scholar
22.Schubert, B. and Tributsch, H., Inorg. Chem. 29 (25) (1990) p. 5041.CrossRefGoogle Scholar
23.Alonso-Vante, N., Chatzitheodorou, G., Fiechter, S., Mgoduka, N., Poulios, I., and Tributsch, H., Sol. En. Meter. 18 (1988) p. 9.CrossRefGoogle Scholar
24.Ferrer, I.J. and Sánchez, C., J. Appl. Phys. 70 (5) (1991) p. 2641.CrossRefGoogle Scholar
25.Karguppikar, A.M. and Vedeschwar, A.G., Phys. Status Solidi A 95 (1986) p. 717.CrossRefGoogle Scholar
26.Chatzitheodorou, G., Fiechter, S., Könenkamp, R., Kunst, M., Jaegermann, W., and Tributsch, H., Mater. Res. Bull. 21 (1986) p. 1481.CrossRefGoogle Scholar
27.Smestad, G., Da Silva, A., and Fiechter, S., Sol. En. Mater. 18 (1989) p. 299.CrossRefGoogle Scholar
28.Bausch, S., Sailer, B., Keppner, H., Willeke, G., and Bucher, E., Appl. Phys. Lett. 57 (1) (1990) p. 25.CrossRefGoogle Scholar
29.Willeke, G., Dasbach, R., Sailer, B., and Bucher, E., Thin Solid Films 213 (1992) p. 271.CrossRefGoogle Scholar
30.Dasbach, R., Willeke, G., Bucher, E., Proceedings of the Uth E.C. Photovoltaic Solar Energy Conference Montreux (1992) p. 943.Google Scholar
31.Schlegel, A. and Wachter, P., J. Phys. C (1976) p. 3363.Google Scholar
32.Jaffe, J.F. and Zunger, A., Phys. Rev. B 29 (1984) p. 1882.CrossRefGoogle Scholar
33.Willeke, G., Blenk, O., Kloc, C., and Bucher, E., J. Alloys and Compounds 178 (1992) p. 181.CrossRefGoogle Scholar