Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T04:12:08.220Z Has data issue: false hasContentIssue false

Ionic liquids in supercapacitors

Published online by Cambridge University Press:  15 July 2013

A. Brandt
Affiliation:
University of Münster, Germany; [email protected]
S. Pohlmann
Affiliation:
University of Münster, Germany; [email protected]
A. Varzi
Affiliation:
University of Münster, Germany; [email protected]
A. Balducci
Affiliation:
University of Münster, Germany; [email protected]
S. Passerini
Affiliation:
University of Münster, Germany; [email protected]
Get access

Abstract

Supercapacitors are nowadays considered to be one of the most important electrochemical storage devices. These devices display high power and extraordinary cycle life, and they are currently used in an increasing number of applications. However, in order to further increase the applications of supercapacitors, an increase in their energy capacity appears to be necessary. Moreover, the development of safe and environmentally friendly supercapacitors is also required. In this article, we illustrate the contributions ionic liquids (ILs) might play in the development of high energy and safe supercapacitors. First, the use of ILs as electrolytes in supercapacitors is considered, and the advantages as well as challenges related to the use of this kind of electrolyte are analyzed. Next, the interaction between ILs and electrode materials is taken into account, with particular attention paid to inactive components of supercapacitor electrodes. The introduction of natural cellulose as a binder is used as an example of the contribution ILs might provide to the development of environmentally friendly supercapacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
Naoi, K., Simon, P., Electrochem. Soc. Interface 17, 34 (2008).CrossRefGoogle Scholar
Pandolfo, A.G., Hollenkamp, A.F., J. Power Sources 11, 157 (2006).Google Scholar
Ruch, P.W., Cericola, D., Foelske, A., Kötz, R., Wokaun, A., Electrochim. Acta 55, 2352 (2010).CrossRefGoogle Scholar
Uchi, H., “A Cutting Edge of Electrochemical Capacitor Business,” Proc. Conf. ICAC 2010, p. 57.Google Scholar
Ruch, P.W., Cericola, D., Foelske-Schmitz, A., Kötz, R., Wokaun, A., Electrochim. Acta 55, 4412 (2010).CrossRefGoogle Scholar
Naoi, K., Fuel Cells 10, 825 (2010).CrossRefGoogle Scholar
Chiba, K., Ueda, T., Yamaguchi, Y., Oki, Y., Saiki, F., Naoi, K., J. Electrochem. Soc. 158 (12), A1320 (2011).CrossRefGoogle Scholar
Johnson, K.E., Electrochem. Soc. Interface 16, 38 (2007).CrossRefGoogle Scholar
Zhou, Q., Henderson, W.A., Appetecchi, G.B., J. Phys. Chem. B 135770 (2008).Google Scholar
Randstrom, S., Montanino, M., Appetecchi, G.B., Lagergren, C., Moreno, A., Passerini, S., Electrochim. Acta 53, 6397 (2008).CrossRefGoogle Scholar
Randstroem, S., Appetecchi, G.B., Lagergren, C., Moreno, A., Passerini, S., Electrochim. Acta 53, 1837 (2008).CrossRefGoogle Scholar
Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plée, D., Mastragostino, M., Passerini, S., J. Power Sources 165 (2), 922 (2007).CrossRefGoogle Scholar
Lazzari, M., Mastragostino, M., Pandolfo, A.G., Ruiz, V., Soavi, F., J. Electrochem. Soc. 158 (1), A22 (2011).CrossRefGoogle Scholar
Largeot, C., Taberna, P.L., Gogotsi, Y., Simon, P., Electrochem. Solid-State Lett. 14 (12) A174 (2011).CrossRefGoogle Scholar
Lazzari, M., Mastragostino, M., Soavi, F., Electrochem. Commun. 9, 1567 (2007).CrossRefGoogle Scholar
Lazzari, M., Soavi, F., Mastragostino, M., J. Power Sources 178, 490 (2008).CrossRefGoogle Scholar
Arbizzani, C., Biso, M., Cericola, D., Lazzari, M., Soavi, F., Mastragostino, M., J. Power Sources 185, 1575 (2008).CrossRefGoogle Scholar
Lin, R., Taberna, P.-L., Fantini, S., Presser, V., Pérez, C.R., Malbosc, F., Rupesinghe, N.L., Teo, K.B.K., Gogotsi, Y., Simon, P., J. Phys. Chem. Lett. 2, 2396 (2011).CrossRefGoogle Scholar
Ruiz, V., Huynh, T., Sivakkumar, S.R., Pandolfo, A.G., RSC Adv. 2, 5591 (2012).CrossRefGoogle Scholar
Krause, A., Balducci, A., Electrochem. Commun. 13, 814 (2011).CrossRefGoogle Scholar
MacFarlane, D.R., Meakin, P., Sun, J., Amini, N., Forsyth, M., J. Phys. Chem. B 103, 4164 (1999).CrossRefGoogle Scholar
Reiter, J., Paillard, E., Grande, L., Winter, M., Passerini, S., Electrochim. Acta 91, 101 (2013).CrossRefGoogle Scholar
Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H., Electrochem. Commun. 6, 22 (2004).CrossRefGoogle Scholar
MacFarlane, D.R., Sun, J., Golding, J., Meakin, P., Forsyth, M., Electrochim. Acta 45, 1271 (2000).CrossRefGoogle Scholar
Lewandowski, A., Olejniczak, A., Galinski, M., Stepniak, I., J. Power Sources 195, 5814 (2010).CrossRefGoogle Scholar
Kurig, H., Vestli, M., Janes, A., Lust, E., Electrochem. Solid-State Lett. 14 (8), A120 (2011).CrossRefGoogle Scholar
Palm, R., Kurig, H., Tõnurist, K., Jänes, A., Lust, E., Electrochem. Commun. 2, 203 (2012).CrossRefGoogle Scholar
Shim, Y., Kim, H.J., Jung, Y., Faraday Discuss. 154, 249 (2012).CrossRefGoogle Scholar
Liu, W., Yan, X., Langa, J., Xue, Q., J. Mater. Chem. 22, 8853 (2012).CrossRefGoogle Scholar
Handa, N., Sugimoto, T., Yamagata, M., Kikuta, M., Kono, M., Ishikawa, M., J. Power Sources 185, 1585 (2008).CrossRefGoogle Scholar
Yamagata, M., Soeda, K., Ikebe, S., Yamazaki, S., Ishikawa, M., Electrochim. Acta, doi.org/10.1016/j.electacta.2012.05.073 (2012).Google Scholar
Wei, L., Yushin, G., J. Power Sources 196, 4072 (2011).CrossRefGoogle Scholar
Zhou, Z.-B., Takeda, M., Ue, M., J. Fluorine Chem. 125, 471 (2004).CrossRefGoogle Scholar
Nishida, T., Tashiro, Y., Yamamoto, M., J. Fluorine Chem. 120, 135 (2003).CrossRefGoogle Scholar
McEwen, A.B., Ngo, H.L., LeCompte, K., Goldman, J.L., J. Electrochem. Soc. 146, 1687 (1999).CrossRefGoogle Scholar
Balducci, A., Bardi, U., Caporali, S., Mastragostino, M., Soavi, F., Electrochem. Commun. 6, 566 (2004).CrossRefGoogle Scholar
Sato, T., Masuda, G., Takagi, K., Electrochim. Acta 49, 3603 (2004).CrossRefGoogle Scholar
Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R., Yushin, G., Adv. Funct. Mater. 22, 827 (2012).CrossRefGoogle Scholar
Kurzweil, P., in Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. (Elsevier, Amsterdam, 2009), p. 634.CrossRefGoogle Scholar
Krause, A., Kossyrev, P., Oljaca, M., Passerini, S., Winter, M., Balducci, A., J. Power Sources 196, 8836 (2011).CrossRefGoogle Scholar
Brandt, A., Isken, P., Lex-Balducci, A., Balducci, A., J. Power Sources 204, 213 (2012).CrossRefGoogle Scholar
Jeong, S.S., Böckenfeld, N., Balducci, A., Winter, M., Passerini, S., J. Power Sources 199, 331 (2012).CrossRefGoogle Scholar
Phillips, D.M., Drummy, L.F., Conrady, D.G., Fox, D.M., Naik, R.R., Stone, M.O., Trulove, P.C., De Long, H.C., Mantz, R.A., J. Am. Chem. Soc. 126, 14350 (2004).CrossRefGoogle Scholar
Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D., J. Am. Chem. Soc. 124, 4974 (2002).CrossRefGoogle Scholar
Recham, N., Armand, M., Tarascon, J.-M., C.R. Chim. 13, 106 (2010).CrossRefGoogle Scholar
Heinze, T., Dorn, S., Schöbitz, M., Liebert, T., Köhler, S., Meister, F., Macromol. Symp. 262, 8 (2008).CrossRefGoogle Scholar
Böckenfeld, N., Jeong, S.S., Winter, M., Passerini, S., Balducci, A., J. Power Sources 221, 14 (2013).CrossRefGoogle Scholar