Published online by Cambridge University Press: 29 November 2013
When an energetic ion penetrates a target, it loses its energy via two nearly independent processes: (1) elastic collisions with the nuclei (nuclear-energy loss (dE/dx)n), which dominate the ion slowing down in the low energy range (i.e., in the stopping region); (2) electronic excitation and ionization (electronic-energy loss (dE/dx)e), which strongly overwhelm (dE/dx)n in the high energy range (typically above 1 MeV/nucleon). Until the 1980s, researchers considered that electronic-energy deposition could participate in damaging creation in many insulators, but the effects observed in bulk metals were solely ascribed to elastic nuclear collisions. This widely held opinion was due to the fact that in metallic systems the numerous very mobile conduction electrons allow a fast spreading of the deposited energy and an efficient screening of the space charge created in the projectile wake so that it seemed unreasonable to hope for damage creation or track formation in metallic targets following high levels of electronic-energy deposition.
A particular case is the observation more than 30 years ago of damage in thin or discontinuous. metallic films after fission fragment irradiation or MeV heavy ion bombardment. The spreading of the deposited energy is then strongly limited by the close vicinity of surfaces and interfaces.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.