Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T08:31:18.882Z Has data issue: false hasContentIssue false

Intense Ion-Beam Treatment of Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Over the past decade, researchers in Japan, Russia, and the United States have been investigating the application of intense-pulsed-ion-beam (IPIB) technology (which has roots in inertial confinement fusion programs) to the surface treatment and coating of materials. The short range (0.1–10 μm) and high-energy density (1–50 J/cm2) of these short-pulsed (t ≥ 1 μs) beams (with ion currents I = 5–50 kA, and energies E = 100–1,000 keV) make them ideal flash-heat sources to rapidly vaporize or melt the near-surface layer of targets similar to the more familiar pulsed laser deposition (PLD) or laser surface treatment. The vaporized material can form coatings on substrates, and surface melting followed by rapid cooling (109 K/s) can form amorphous layers, dissolve precipitates, and form nonequilibrium microstructures.

An advantage of this approach over laser processing is that these beams deliver 0.1–10 KJ per pulse to targets at expected overall electrical efficiencies (i.e., the ratio of extracted ion-beam energy to the total energy consumed in generating the beam) of 15–40% (compared to < 1% for the excimer lasers often used for similar applications). Consequently IPIB hardware can be compact and require relatively low capital investment. This opens the promise of environmentally conscious, low-cost, high-throughput manufacturing. Further, efficient beam transport to the target and excellent coupling of incident ion energy to targets are achieved, as opposed to lasers that may have limited coupling to reflective materials or produce reflecting plasmas at high incident fluence. The ion range is adjustable through selection of the ion species and kinetic energy, and the beam energy density can be tailored through control of the beam footprint at the target to melt (1–10 J/cm2) or to vaporize (10–50 J/cm2) the target surface. Beam pulse durations are short (≥ 1 μs) to minimize thermal conduction. Some disadvantages of IPIB processing over laser processing include the need to form and propagate the beams in vacuum, and the need for shielding of x-rays produced by relatively low-level electron current present in IPIB accelerators. Also these beams cannot be as tightly focused onto targets as lasers, making them unsuitable for applications requiring treatment on small spatial scales.

Type
Plasma Processing of Advanced Materials
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bystriskii, V.M. and Didenko, A., High Power Ion Beams (American Institute of Physics, New York, 1989).Google Scholar
2.Sudan, R.N., in Inertial Confinement fusion, edited by Caruso, A. and Sindoni, E. [International School of Plasma Physics “Piero Caldirola” (Varenna), Italian Physical Society, Bologna, 1989] p. 453.Google Scholar
3.Shimotori, Y., Yokoyama, M., Isobe, H., Harada, S., Masugata, K., and Yatsui, K., J. Appl. Phys. 63 (1988) p. 968.CrossRefGoogle Scholar
4.Yatsui, K., Laser and Particle Beams 7 (733) (1989) p. 1989.CrossRefGoogle Scholar
5.Shimotori, Y., Yokoyama, M., Harada, S., Masugata, K., and Yatsui, K., Jpn. J. Appl. Phys. 28 (1989) p. 468.CrossRefGoogle Scholar
6.Gautier, D.C., Muenchausen, R.E., Rej, D.J., Roberts, B.F., Johnston, G.P., and Waganaar, W.J., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L.R., Herbots, N., and Averback, R.S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, 1993) p. 657.Google Scholar
7.Johnston, G.P., Tiwari, P., Rej, D.J., Davis, H.A., Waganaar, W.J., Muenchausen, R.E., Walter, K.C., Nastasi, M., Schmidt, H.K., Kumar, N., Lin, B., Tallant, D.R., Simpson, R.L., Williams, D.B., and Qiu, X., J. Appl. Phys. 76 (1994) p. 5949.CrossRefGoogle Scholar
8.Yatsui, K., Kang, X.D., Sonegawa, T., Matsuoka, T., Masugata, K., Shimotori, Y., Satoh, T., Furuuchi, S., Ohuchi, Y., Takeshita, T., and Yamamoto, H., Phys. of Plasmas 1 (1994) p. 1730.CrossRefGoogle Scholar
9.Zakoutayev, A.N., Remnev, G.E., Ivanov, Yu. F., Arteyev, M.S., Matvienko, V.M., and Potyomkin, A.N., in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H.A., Dickinson, J.T., Lowndes, D.H., and Polman, A. (Mater. Res. Soc. Symp. Proc. 388, Pittsburgh, 1995) p. 388.Google Scholar
10.Olson, J.C., Thompson, M.O., Davis, H.A., Rej, D.J., Waganaar, W.J., and Tallant, D.R., in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H.A., Dickinson, J.T., Lowndes, D.H., and Polman, A. (Mater. Res. Soc. Symp. Proc. 388, Pittsburgh, 1995) p. 171.Google Scholar
11.Meli, C.A., Grabowski, K.S., Hinshelwood, D.D., Stephanakis, S.J., Rej, D.J., and Waganaar, W.J., J. Vac. Sci. Technol. A 13 (1995) p. 1182.CrossRefGoogle Scholar
12.Olson, J.C., Davis, H.A., Rej, D.J., Waganaar, W.J., Stinnett, R.W., and McIntyre, D.C., J. Electron. Mater. 25 (1996) p. 81.CrossRefGoogle Scholar
13.Rej, D.J., Remnev, G.E., Davis, H., Isakov, I., Ivanov, Yu., Johnston, G., Matvienko, V., Nastasi, M., Olson, J., Potyomkin, A., Schmidt, H., Semukhin, B., Tallant, D., Thompson, M., Waganaar, W., Walter, K., Williams, D., and Zakowtayev, A., in Proc. 3rd Int. Conf. on Applications of Diamond Films and Related Materials, edite d by Feldman, A., Tzeng, Y., Yarbrough, W., Yoshikawa, M., and Murakawa, M. (National Institute of Standards and Technology, Gaithersburg, MD, 1995) p. 723.Google Scholar
14.Ivanov, Yu.F., Matvienko, V.M., Potyomkin, A.V., Remnev, G.E., and Zakoutayev, A.N., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-S., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh) in press.Google Scholar
15.Pogrebnjak, A.D., Phys. Status Solidi A 86 (1984) p. 191.CrossRefGoogle Scholar
16.Fastow, R., Maron, Y., and Mayer, J., Phys. Rev. B 31 (1985) p. 893.CrossRefGoogle Scholar
17.Bojarko, E.Yu., Verigin, A.A., Koscheev, V.P., Krjuchkov, Yu., and Progrebnjak, A.D., Nucl. Instrum. Meth. in Phys. Res. B 17 (1986) p. 162.CrossRefGoogle Scholar
18.Didenko, A.N., Isakov, I.F., and Remnev, G.E., Nucl. Instrum. Meth. in Phys. Res. B 17 (1986) p. 165.CrossRefGoogle Scholar
19.Pogrebnjak, A.D., Remnev, G.E., and Plotnikov, S.V., Mater. Sci. Eng. A 115 (1989) p. 175.CrossRefGoogle Scholar
20.Fastow, R., Brener, R., Eizenberg, M., and Mayer, J.W., J. Vac. Sci. Technol. A 5 (1987) p. 164.CrossRefGoogle Scholar
21.Fastow, R. and Mayer, J.W., J. Appl. Phys. 61 (1987) p. 175.CrossRefGoogle Scholar
22.Pogrebnjak, A.D., Isakov, I.F., Opekunov, M.S., Ruzimov, Sh.M., Ligachev, A.E., Nesmelov, A.N., and Kurakin, I.B., Phys. Lett. A 123 (1987) p. 410.CrossRefGoogle Scholar
23.Pogrebnjak, A.G., Remnev, G.E., Chistjakov, S.A., and Ligachev, A.E., Physika 1 (1987) p. 52.Google Scholar
24.Nakagawa, Y., Ariyoshi, T., Itami, M., and Fujii, Y., Jpn. J. Appl. Phys. 27 (1988) p. L719.CrossRefGoogle Scholar
25.Pogrebnjak, A.D., Remnev, G.E., Kurakin, I.B., and Ligachev, A.E., Nucl. Instrum. Meth. in Phys. Res. B 36 (1989) p. 286.CrossRefGoogle Scholar
26.Chistjakov, S.A., Pogrebnjak, A.G., and Remnev, G.E., Nucl. Instrum. Meth. in Phys. Res. B 42 (1989) p. 342.CrossRefGoogle Scholar
27.Nakagawa, Y., Ariyoshi, T., Hanjo, H., Tsutsumi, S., Fujii, Y., Itami, M., Okamoto, A., Ogawa, S., Hamada, T., and Fukumaru, F., Nucl. Instrum. Meth. in Phys. Res. B 3 (1989) p. 603.CrossRefGoogle Scholar
28.Remnev, G.E. and Shulov, V.A., Lasers and Particle Beams 11 (1993) p. 707.CrossRefGoogle Scholar
29.Stinnett, R.W., Buchheit, R.G., Greulich, F.A., Hills, C.R., Kilgo, A.C., McIntyre, D.C., Greenly, J.B., Thompson, M.O., and Rej, D.J., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R.J., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, 1994) p. 521.Google Scholar
30.Shwlov, V.A., Nochevnaya, N.A., Remnev, G.E., Isakov, I.F., Polyakova, I.G., and Shabanov, N.I., Sov. Tech. Phys. Lett. 17 (1991) p. 38.Google Scholar
31.Chu, W.K., Mader, S.R., Gorey, E.F., Baglin, E.E., Hodgson, R.T., Neri, J.M., and Hammer, D.A., Nucl. Instrum. Meth. in Phys. Res. 194 (1982) p. 443.CrossRefGoogle Scholar
32.Feuer, T., Wahl, S., and Langhoff, H., J. Appl. Phys. 74 (1993) p. 3523.CrossRefGoogle Scholar
33.Yatsui, K., Grigoriu, C., Kubo, H., Masugata, K., and Shimotori, Y., Appl. Phys. Lett. 67 (1995) p. 1214.CrossRefGoogle Scholar
34.Rej, D.J., Bartsch, R.R., Davis, H.A., Faehl, R.J., Greenly, J.B., and Waganaar, W.J., Rev. Sci. Instrum. 64 (1993) p. 2753.CrossRefGoogle Scholar
35.Humphries, S. Jr., Anderson, R.J., Freeman, J.R., and Greenly, J., Rev. Sci. Instrum. 52 (1981) p. 162.CrossRefGoogle Scholar
36.Nakagawa, Y., Isska, K., Kohci, A., and Matsushita, K., Rev. Sci. Instrum. 65 (1994) p. 1345.CrossRefGoogle Scholar
37.Noonan, W.A., Glidden, S.C., Greenly, J.B., and Hammer, D.A., Rev. Sci. Instrum. 66 (1995) p. 3448.CrossRefGoogle Scholar
38.Isakov, I.F., Matvienko, V.M., Opekunov, M.S., Remnev, G.E., and Usov, Y.P., Vacuum 42 (1991) p. 159.CrossRefGoogle Scholar
39.Stinnett, R., Mclntyre, D.C., Buchheit, R.G., Neau, E.L., Greenly, J.B., Thompson, M.O., Johnston, G.P., and Rej, D.J., in Proc. 10th Int. Conf. on High-Power Particle Beams, edited by White, R. and Rix, W. (NTIS PB95-144317, National Technical Information Service, Springfield, VA, 1994) p. 215.Google Scholar
40.Olson, J.C., Davis, H.A., Reass, W.A., Coates, D.M., Greenly, J.B., Lovberg, R.H., and Schleinitz, H.M., “Progress Toward a Microsecond Duration, Repetitive, Intense-Ion Beam Accelerator” (unpublished manuscript).Google Scholar
41.Remnev, G.E., Isakov, I.F., Struts, V.K., Sergeev, A.N., Rudnev, S.V., Kutuzov, V.L., Kulikov, Yu.Yu., and Ovsyannikov, M.N., in Proc. 10th Int. Conf. on High-Power Particle Beams, edited by White, R. and Rix, W. (NTIS PB95-144317, National Technical Information Service, Springfield, VA, 1994) p. 844.Google Scholar
42.Kang, X., Masugata, K., and Yatsui, K., Lasers and Part. Beams 13 (1995) p. 201.CrossRefGoogle Scholar
43.Pappas, D.L., Saenger, K.L., Cuomo, J.C., and Dreyfus, R.W., J. Appl. Phys. 71 (1992) p. 5675.CrossRefGoogle Scholar
44.Siegel, R.W., MRS Bulletin XV (1990) p. 60.CrossRefGoogle Scholar