Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T23:02:17.781Z Has data issue: false hasContentIssue false

Integration of Low-k Dielectric Materials Into Sub-0.25-μm Interconnects

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

As the dimensions of ultralarge-scale-integration devices scale to smaller feature sizes and larger die dimensions, the resistance-capacitance (RC) delay of the metal interconnect will increasingly limit the performance of high-speed logic chips. This is because the transistor capacitance and resistance both scale to lower values as the feature size is reduced, while both the line-to-line capacitance and resistance of the metal-interconnect lines increase as their dimensions decrease. For interconnects 5-mm long, the crossover feature size at which the interconnect delay dominates the transistor delay is approximately 0.5 μm. Since this interconnect RC delay increases roughly quadratically with decreasing feature size versus the historical quadratic reduction in transistor delay, device designers currently face difficult barriers to continued performance increases with scaling. Figure 1 presents the components of the RC delay for a single-transistor/single-interconnect combination with 0.35-μm feature sizes. The total delay can be broken into four additive components: the transistor delay R0C0, the interconnect delay rLcL, and the two transistor/interconnect cross terms where R0 and C0 are the transistor resistance and capacitance, r and c are the specific resistance and capacitance, and L is the interconnect length. As can be seen for interconnect lengths less than about 100-μm long, the intrinsic transistor delay dominates. However for interconnect lengths between approximately 100 μm and 10 mm, the resistance of the transistor coupled with the capacitance of the interconnect dominates the combined delay, resulting in a linear increase in delay with increasing line length.

Type
Low-Dielectric-Constant Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bohr, M., in Adanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Schmitz, J., Komiyama, H., and Tsubouchi, K. (Materials Research Society, Pittsburgh, 1997) p. 3.Google Scholar
2. Yamashita, K. and Odanaka, S., VLSI Technol Symp. Tech. Dig. (1997) p. 53.Google Scholar
3. Dixit, P., in Proc. SEMATECH Workshop on Low Dielectric Constant Materials and Interconnects (SEMATECH, San Diego, 1996) p. 1.Google Scholar
4. Jeng, S-P., Havemann, R., and Chang, M., in Advanced Metallization for Devices and Cicuits — Science, Technology, and Manufacturability, edited by Murarka, S.P., Katz, A., Tu, K.N., and Maex, K. (Mater. Res. Soc. Symp. Proc. 337, Pittsburgh, 1994) p. 25.Google Scholar
5. Jin, C., Ting, L., Taylor, K., Seha, T., and Luttmer, J.D., in Proc. Dielectrics for ULSI Multilevel Interconnection Conf. (Santa Clara, CA, 1996) p. 21.Google Scholar
6. Shih, W-Y., Levine, J., and Chang, M., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Schmitz, J., Komiyama, H., and Tsubouchi, K. (Materials Research Society, 1997) p. 479.Google Scholar
7. Price, D.T., Gutmann, R.J., and Murarka, S.P., in Proc. SEMATECH Workshop on Low Dielectric Constant Materials and Interconnects (SEMATECH, San Diego, 1996) p. 479.Google Scholar
8. Waeterloos, J., Meynen, H., Coenegrachts, B., Grillaert, J., and Van den hove, L., Proc. SEMATECH Workshop on Low Dielectric Constant Materials and Interconnects p. 404.Google Scholar
9. Jeng, S-P., Chang, M-C., Kroger, T., McAnally, P., and Havemann, R.H., VLSI Technol. Symp. Tech. Dig. (1994) p. 73.Google Scholar
10. Stamper, A.K., McGahay, V., and Hummel, J.P., in Proc. Dielectrics for ULSI Multilevel Interconnection Conf. (Santa Clara, CA, 1997) p. 13.Google Scholar
11. Bothra, S., Qian, L.Q., Weling, M., and Pramanik, D., Proc. Dielectrics for ULSI Multilevel Interconnection Conf. p. 273.Google Scholar
12. Tobben, D., Groteloh, D., and Spindler, O., Proc. Dielectrics for ULSI Multilevel Interconnection Conf. (1996) p. 29.Google Scholar
13. Karim, M.Z. and Evans, D.R., Proc. Dielectrics for ULSI Multilevel Interconnection Conf. p. 63.Google Scholar
14. Kudo, H., Takeishi, S., Shinohara, R., and Yamada, M., Proc. Dielectrics for ULSI Multilevel Interconnection Conf. (1997) p. 85.Google Scholar
15. Fleming, J.G. and Roherty-Osmun, E., Proc. Dielectrics for ULSI Multilevel Interconnection Conf. p. 139.Google Scholar
16. Fleming, J.G., Roherty-Osmun, E., and Farino, A.J., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Schmitz, J., Komiyama, H., and Tsubouchi, K. (Materials Research Society, Pittsburgh, 1997) p. 471.Google Scholar
17. Singh, A., Dixit, G., List, R.S., Russell, S.W., Ralston, A.R.K., Aldrich, D., Shih, W-Y., Nag, S., McKerrow, A.J., Jin, C., Lee, W., Luttmer, J.D., and Havemann, R.H., in Proc. Low and High Dielectric Constant Materials, (Electrochemical Society, Montreal, 1997).Google Scholar
18. Nakashima, A., Egami, M., Komatsu, M., Ohkura, Y., Miyajima, M., Harada, H., and Fukuyama, S., in Proc. Dielectrics for ULSI Multilevel Interconnection Conf. (Santa Clara, CA, 1997) p. 303.Google Scholar
19. Jain, M.K., Nag, S., Dixit, G.A., Luttmer, J.D., and Havemann, R.H., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Schmitz, J., Komiyama, H., and Tsubouchi, K. (Materials Research Society, Pittsburgh, 1997) p. 423.Google Scholar
20. Case, C.B., Case, C.J., Kornblit, A., Mills, M.E., Castillo, D., and Liu, R., Advanced Metallization and Interconnect Systems for ULSI Applications in 1996 (1996) p. 449.Google Scholar
21. List, R.S., Jin, C., Russell, S.W., Yamanaka, S., Olsen, L., Le, L., Tang, L.M., and Havemann, R.H., VLSI Technol. Symp. Tech. Dig. (1977) p. 77.Google Scholar
22. Jin, C., List, R.S., Lee, W.W., Lee, C., Luttmer, J.D., and Havemann, R.H., in Low-Dielectric Constant Materials II, edited by Uram, K., Treichel, H., Jones, A.C., and Lagendijk, A. (Mater. Res. Symp. Proc. 443, Pittsburgh, 1997).Google Scholar
23. Jin, C., List, R.S., Lee, W.W., Lee, C., Luttmer, J.D., and Havemann, R.H., in Advanced Metallization for ULSI Applications in 1996, edited by Havemann, R., Schmitz, J., Komiyama, H., and Tsubouchi, K. (Materials Research Society, 1997) p. 463.Google Scholar
24. Oda, N., Usami, T., Kishimoto, K., Matsumoto, A., Mikagi, K., Kikuta, K., Gomi, H., and Sakai, I., VLSI Technol. Symp. Tech. Dig. (1997) p. 79.Google Scholar
25. Ralston, A.R.K., Gaynor, J.F., Singh, A., Le, L.V., Havemann, R.H., Piano, M.A., Cleary, T., Wing, J.C., and Kelly, J., VLSI Technol. Symp. Tech. Dig. (1997) p. 81.Google Scholar
26. Matsubara, Y., Endo, K., Tatsumi, T., Ueno, H., Sugai, K., and Horiuchi, T., Proc. IEEE IEDM (1996) p. 369.Google Scholar
27. Biery, G.A. and Hu, C-K., Proc. SEMATECH Workshop on Low Dielectric Constant Materials and Interconnects (SEMATECH, San Diego, 1996) p 499.Google Scholar
28. Yoshiyama, K., Okada, K., Igarahi, M., Yamada, K., Shimizu, S., Takata, Y., Osaki, A., Higashitani, K., and Asai, S., VLSI Technol. Symp. Tech. Dig. (1997) p. 55.Google Scholar
29. Holloway, T.C., Dixit, G.A., Grider, D.T., Ashburn, S.P., Aggarwal, R., Shih, A., Zhang, X., Musium, G., Esquivel, A.L., Jain, M., Madan, S., Breedijk, T., Singh, A., Thakar, G., Shinn, G., Riemenschneider, B., O'Brien, S., Frystak, D., Kittl, J., Amerasekera, A., Aur, S., Appel, A., Bowles, C., and Parrill, T., VLSI Technol. Symp. Tech. Dig. p. 13.Google Scholar
30. Mizobuchi, K., Hamamoto, K., Utsugi, M., Dixit, G.A., Poarch, S., Havemann, R.H., Dobson, C.D., Jeffryes, A.I., Holverson, P.J., Rich, Paul, D.C. Butler, Nick Rimmer, and Arthur McGeow, VLSI Technol. Symp. Tech. Dig. (1995) p 45.Google Scholar
31. Chow, S.W., Loeb, W.E., and White, C.E., J. Appl. Polym. Sci. 13 (1969) p. 2235; Electronic Packaging Materials Science VI, edited by P.S. Ho, K.A. Jackson, C-Y. Li, and G.F. Lipscomb (Mater. Res. Soc. Symp. Proc. 264, Pittsburgh, 1992) p. 83.Google Scholar
32. Wary, J., Olson, R., and Beach, W., Semicond. Int. 19 (1996) p. 211.Google Scholar
33. Gaynor, J., Chen, J., Nguyen, H., Brown, G., Taylor, K., Luttmer, J.D., Piano, M.A., Cleary, T., Wing, J. and Kelly, J., in Proc. Low and High Dielectric Constant Materials (Electrochemical Society, Montreal, 1997).Google Scholar
34. Harrus, A., Kelly, J., Kumar, D., Mountsier, T., and Piano, M.A., presented at the 52nd Symposium on Semiconductors and Integrated Circuits Technology (Electrochemial Society, Japan, June 1997).Google Scholar
35. Wu, P.K., Yang, G-R., MacDonald, J.F., and Lu, T-M., J. Electron. Mater. 24 (1995) p. 53.CrossRefGoogle Scholar
36. Harrus, A.S., Piano, M.A., Kumar, D., and Kelly, J., in Electronic Materials and Processing, Semiconductors, Thin Films and Interfaces, edited by Uram, K., Treichel, H., Jones, A.C., and Lagendijk, A. (Mater. Res. Soc. Symp. Proc. 443, Pittsburgh, 1997).Google Scholar