Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:38:06.003Z Has data issue: false hasContentIssue false

Inorganic materials for transient electronics in biomedical applications

Published online by Cambridge University Press:  10 February 2020

Yeonsik Choi
Affiliation:
Center for Bio-Integrated Electronics, Northwestern University, USA; [email protected]
Jahyun Koo
Affiliation:
Center for Bio-Integrated Electronics, Northwestern University, USA; [email protected]
John A. Rogers
Affiliation:
Biomedical Engineering and Medicine, and Institute for Bioelectronics, Northwestern University, USA; [email protected]
Get access

Abstract

Transient electronic systems represent an emerging class of technology defined by an ability to physically dissolve, sublime, chemically degrade, disintegrate, or transform in a controlled manner, either spontaneously or through a trigger event. Bioresorbable (or, equivalently, bioabsorbable) electronic devices, as a subset of transient technologies, are designed to undergo complete dissolution when immersed in biofluids. Applications include temporary implants and other medical devices that serve important purposes in diagnostics and therapies, but with finite lifetimes matched to those of natural biological processes such as wound healing. Here, transience by bioresorption eliminates the devices without a trace, thereby bypassing the costs, complications, and risks associated with secondary surgical procedures for device retrieval. Such systems demand complete sets of bioresorbable electronic materials, including semiconductors, dielectrics, and conductors, as the fundamental building blocks for functional components. The considerations are not only in electronic performance, but in degradation chemistry and biocompatibility of both the materials and the products of their reactions with biofluids. This article highlights recent progress in this area of materials science and describes some of the most sophisticated bioresorbable electronic systems that combine these materials with bioresorbable polymers, the biomedical applications of these devices, and some directions for future work.

Type
Transient Electronic Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hwang, S.-W., Tao, H., Kim, D.-H., Cheng, H., Song, J.-K., Rill, E., Brenckle, M.A., Panilaitis, B., Won, S.M., Kim, Y.-S., Song, Y.M., Yu, K.J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D.L., Zakin, M.R., Slepian, M.J., Huang, Y., Omenetto, F.G., Rogers, J.A., Science 337, 1640 (2012).CrossRefGoogle Scholar
Kang, S.K., Koo, J., Lee, Y.K., Rogers, J.A., Acc. Chem. Res. 51, 988 (2018).CrossRefGoogle Scholar
Yoder, M.A., Yan, Z., Han, M., Rogers, J.A., Nuzzo, R.G., J. Am. Chem. Soc. 140, 9001 (2018).CrossRefGoogle Scholar
Feig, V.R., Tran, H., Bao, Z., ACS Cent. Sci. 4, 337 (2018).CrossRefGoogle Scholar
Yin, L., Farimani, A.B., Min, K., Vishal, N., Lam, J., Lee, Y.K., Aluru, N.R., Rogers, J.A., Adv. Mater. 27, 1857 (2015).CrossRefGoogle Scholar
Hwang, S.W., Park, G., Cheng, H., Song, J.K., Kang, S.K., Yin, L., Kim, J.H., Omenetto, F.G., Huang, Y., Lee, K.M., Rogers, J.A., Adv. Mater. 26, 1992 (2014).CrossRefGoogle Scholar
Cheng, H., J. Mater. Res. 31, 2549 (2016).CrossRefGoogle Scholar
Lee, Y.K., Yu, K.J., Song, E., Barati Farimani, A., Vitale, F., Xie, Z., Yoon, Y., Kim, Y., Richardson, A., Luan, H., Wu, Y., Xie, X., Lucas, T.H., Crawford, K., Mei, Y., Feng, X., Huang, Y., Litt, B., Aluru, N.R., Yin, L., Rogers, J.A., ACS Nano 11, 12562 (2017).CrossRefGoogle Scholar
Hwang, S.W., Kim, D.H., Tao, H., Il Kim, T., Kim, S., Yu, K.J., Panilaitis, B., Jeong, J.W., Song, J.K., Omenetto, F.G., Rogers, J.A., Adv. Funct. Mater. 23, 4087 (2013).CrossRefGoogle Scholar
Kang, S.K., Park, G., Kim, K., Hwang, S.W., Cheng, H., Shin, J., Chung, S., Kim, M., Yin, L., Lee, J.C., Lee, K.M., Rogers, J.A., ACS Appl. Mater. Interfaces 7, 9297 (2015).CrossRefGoogle Scholar
Kang, S.K., Hwang, S.W., Cheng, H., Yu, S., Kim, B.H., Kim, J.H., Huang, Y., Rogers, J.A., Adv. Funct. Mater. 24, 4427 (2014).CrossRefGoogle Scholar
Li, R., Cheng, H., Su, Y., Hwang, S.W., Yin, L., Tao, H., Brenckle, M.A., Kim, D.H., Omenetto, F.G., Rogers, J.A., Huang, Y., Adv. Funct. Mater. 23, 3106 (2013).CrossRefGoogle Scholar
Yin, L., Cheng, H., Mao, S., Haasch, R., Liu, Y., Xie, X., Hwang, S.W., Jain, H., Kang, S.K., Su, Y., Li, R., Huang, Y., Rogers, J.A., Adv. Funct. Mater. 24, 645 (2014).CrossRefGoogle Scholar
Borenstein, J.T., Gerrish, N.D., Currie, M.T., Fitzgerald, E.A., IEEE Int. Microelectromech. Syst. Conf. Tech. Dig. (1999), p. 205.Google Scholar
Lu, D., Liu, T., Chang, J., Peng, D., Zhang, Y., Shin, J., Hang, T., Bai, W., Yang, Q., Rogers, J.A., Adv. Mater. 31, 1902739 (2019).CrossRefGoogle Scholar
Dagdeviren, C., Hwang, S.W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F.G., Huang, Y., Rogers, J.A., Small 9, 3398 (2013).CrossRefGoogle Scholar
Jin, S.H., Kang, S.K., Cho, I.T., Han, S.Y., Chung, H.U., Lee, D.J., Shin, J., Baek, G.W., Il Kim, T., Lee, J.H., Rogers, J.A., ACS Appl. Mater. Interfaces 7, 8268 (2015).CrossRefGoogle Scholar
Lee, Y.K., Yu, K.J., Kim, Y., Yoon, Y., Xie, Z., Song, E., Luan, H., Feng, X., Huang, Y., Rogers, J.A., ACS Appl. Mater. Interfaces 9, 42633 (2017).CrossRefGoogle Scholar
Brady, P.V., Walther, J.V., Chem. Geol. 82, 253 (1990).CrossRefGoogle Scholar
Shin, J., Yan, Y., Bai, W., Xue, Y., Gamble, P., Tian, L., Kandela, I., Haney, C.R., Spees, W., Lee, Y.K.Y., Choi, M., Ko, J., Ryu, H., Chang, J.K., Pezhouh, M., Kang, S.K., Won, S.M., Yu, K.J., Zhao, J., Lee, Y.K.Y., MacEwan, M.R., Song, S.K., Huang, Y., Ray, W.Z., Rogers, J.A., Nat. Biomed. Eng. 3, 37 (2019).CrossRefGoogle Scholar
Shin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., Xue, Y., Kandela, I., Pezhouh, M., MacEwan, M.R., Huang, Y., Ray, W.Z., Zhou, W., Rogers, J.A., Sci. Adv. 5, 1 (2019).Google Scholar
Kang, S.K., Hwang, S.W., Yu, S., Seo, J.H., Corbin, E.A., Shin, J., Wie, D.S., Bashir, R., Ma, Z., Rogers, J.A., Adv. Funct. Mater. 25, 1789 (2015).CrossRefGoogle Scholar
Song, G., Atrens, A., Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
Ambat, R., Aung, N.N., Zhou, W., J. Appl. Electrochem. 30, 865 (2000).CrossRefGoogle Scholar
Reffitt, D.M., Jugdaohsingh, R., Thompson, R.P.H., Powell, J.J., J. Inorg. Biochem. 76, 141 (1999).CrossRefGoogle Scholar
Bai, W., Shin, J., Fu, R., Kandela, I., Lu, D., Ni, X., Park, Y., Liu, Z., Hang, T., Wu, D., Liu, Y., Haney, C.R., Stepien, I., Yang, Q., Zhao, J., Nandoliya, K.R., Zhang, H., Sheng, X., Yin, L., MacRenaris, K., Brikha, A., Aird, F., Pezhouh, M., Hornick, J., Zhou, W., Rogers, J.A., Nat. Biomed. Eng. 3, 644 (2019).CrossRefGoogle Scholar
Schmidt, S., Horch, K., Normann, R., J. Biomed. Mater. Res. 27, 1393 (1993).CrossRefGoogle Scholar
Kristensen, B.W., Noraberg, J., Thiébaud, P., Koudelka-Hep, M., Zimmer, J., Brain Res . 896, 1 (2001).CrossRefGoogle Scholar
Hamaoka, T., McCully, K.K., Niwayama, M., Chance, B., Philos. Trans. A Math. Phys. Eng. Sci. 369, 4591 (2011).CrossRefGoogle Scholar
Ferrari, M., Quaresima, V., Neuroimage 63, 921 (2012).CrossRefGoogle Scholar
Lloyd-Fox, S., Blasi, A., Elwell, C.E., Neurosci. Biobehav. Rev. 34, 269 (2010).CrossRefGoogle Scholar
Yu, K.J., Kuzum, D., Hwang, S.W., Kim, B.H., Juul, H., Kim, N.H., Won, S.M., Chiang, K., Trumpis, M., Richardson, A.G., Cheng, H., Fang, H., Thompson, M., Bink, H., Talos, D., Seo, K.J., Lee, H.N., Kang, S.K., Kim, J.H., Lee, J.Y., Huang, Y., Jensen, F.E., Dichter, M.A., Lucas, T.H., Viventi, J., Litt, B., Rogers, J.A., Nat. Mater. 15, 782 (2016).CrossRefGoogle Scholar
Kang, S.K., Murphy, R.K.J., Hwang, S.W., Lee, S.M.S.H., Harburg, D.V., Krueger, N.A., Shin, J., Gamble, P., Cheng, H., Yu, S., Liu, Z., McCall, J.G., Stephen, M., Ying, H., Kim, J., Park, G., Webb, R.C., Lee, C.H., Chung, S., Wie, D.S., Gujar, A.D., Vemulapalli, B., Kim, A.H., Lee, K.M., Cheng, J., Huang, Y., Lee, S.M.S.H., Braun, P.V., Ray, W.Z., Rogers, J.A., Nature 530, 71 (2016).CrossRefGoogle Scholar
Koo, J., MacEwan, M.R., Kang, S.-K.K., Won, S.M., Stephen, M., Gamble, P., Xie, Z., Yan, Y., Chen, Y.-Y.Y., Shin, J., Birenbaum, N., Chung, S., Kim, S.B., Khalifeh, J., Harburg, D.V., Bean, K., Paskett, M., Kim, J., Zohny, Z.S., Lee, S.M., Zhang, R., Luo, K., Ji, B., Banks, A., Lee, H.M., Huang, Y., Ray, W.Z., Rogers, J.A., Nat. Med. 24, 1830 (2018).CrossRefGoogle Scholar
Hwang, S.W., Lee, C.H., Cheng, H., Jeong, J.W., Kang, S.K., Kim, J.H., Shin, J., Yang, J., Liu, Z., Ameer, G.A., Huang, Y., Rogers, J.A., Nano Lett . 15, 2801 (2015).CrossRefGoogle Scholar