Published online by Cambridge University Press: 29 November 2013
The discovery by Bednörz and Müller of superconductivity in La20xBaxCuO4 initiated an intense and fruitful search for additional perovskite-based superconducting compounds. Following the discovery and characterization of a number of important new compounds, and the development of techniques to produce them in pure crystalline form, it becomes relevant to carefully measure the fundamental physical properties of well-characterized samples of these new materials. Ultimately the goal of this work is to illuminate the basic physics of these novel materials.
Traditionally many techniques, including critical field measurements, specific heat, penetration depth, magnetic resonance, and tunneling and infrared spectroscopies, have been useful for the study of superconducting elements and compounds. This article discusses the use of infrared measurements to study both cubic BaBiO3 based compounds and layered cuprates. We emphasize the work on the (ideally) stochiometric compound Y1Ba2Cu3O7, because its infrared properties have been obtained by a number of groups with good reproducibility. Infrared measurements are useful both in terms of their traditional role as a probe of the superconducting energy gap and for their ability to probe the dynamics of the normal state by measuring the conductivity vs. frequency in the crucial infrared range (~1 meV to 2 eV).