Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T02:40:35.078Z Has data issue: false hasContentIssue false

In situ electrochemical scanning/transmission electron microscopy of electrode–electrolyte interfaces

Published online by Cambridge University Press:  10 September 2020

Raymond R. Unocic
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, USA; [email protected]
Katherine L. Jungjohann
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; [email protected]
B. Layla Mehdi
Affiliation:
Albert Crewe Center for Electron Microscopy, University of Liverpool, UK; [email protected]
Nigel D. Browning
Affiliation:
Albert Crewe Center for Electron Microscopy, University of Liverpool, UK; [email protected]
Chongmin Wang
Affiliation:
Pacific Northwest National Laboratory, USA; [email protected]
Get access

Abstract

Insights into the dynamics of electrochemical processes are critically needed to improve our fundamental understanding of electron, charge, and mass transfer mechanisms and reaction kinetics that influence a broad range of applications, from the functionality of electrical energy-storage and conversion devices (e.g., batteries, fuel cells, and supercapacitors), to materials degradation issues (e.g., corrosion and oxidation), and materials synthesis (e.g., electrodeposition). To unravel these processes, in situ electrochemical scanning/transmission electron microscopy (ec-S/TEM) was developed to permit detailed site-specific characterization of evolving electrochemical processes that occur at electrode–electrolyte interfaces in their native electrolyte environment, in real time and at high-spatial resolution. This approach utilizes “closed-form” microfabricated electrochemical cells that couple the capability for quantitative electrochemical measurements with high spatial and temporal resolution imaging, spectroscopy, and diffraction. In this article, we review the state-of-the-art instrumentation for in situ ec-S/TEM and how this approach has resulted in new observations of electrochemical processes.

Type
Liquid Phase Electron Microscopy
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tripathi, A.M., Su, W.N., Hwang, B.J., Chem. Soc. Rev. 47, 736 (2018).CrossRefGoogle Scholar
Pennycook, S.J., Nellist, P.D., Scanning Transmission Electron Microscopy (Springer, New York, 2011).CrossRefGoogle ScholarPubMed
Ross, F.M., Science 350, aaa9886-1 (2015).CrossRefGoogle Scholar
Ross, F.M., Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2017).Google Scholar
Grogan, J.M., Bau, H.H., J. Microelectromech. Syst. 19, 885 (2010).CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
Leenheer, A.J., Sullivan, J.P., Shaw, M.J., Harris, C.T., J. Microelectromech. Syst. 24, 1061 (2015).CrossRefGoogle Scholar
Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, J., Nackashi, D.P., Microsc. Microanal. 20, 452 (2014).CrossRefGoogle Scholar
Fahrenkrug, E., Alsem, D.H., Salmon, N., Maldonado, S., J. Electrochem. Soc. 164, H358 (2017).CrossRefGoogle Scholar
Girod, R., Nianias, N., Tileli, V., Microsc. Microanal. 25, 1304 (2019).CrossRefGoogle Scholar
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).CrossRefGoogle Scholar
Radisic, A., Vereecken, P.M., Searson, P.C., Ross, F.M., Surf. Sci. 600, 1817 (2006).CrossRefGoogle Scholar
Yang, J., Andrei, C.M., Chan, Y., Mehdi, B.L., Browning, N.D., Botton, G.A., Soleymani, L., Langmuir 35, 862 (2019).CrossRefGoogle Scholar
Yang, J., Andrei, C.M., Botton, G.A., Soleymani, L., J. Phys. Chem. C 121, 7435 (2017).CrossRefGoogle Scholar
Chen, X., Noh, K.W., Wen, J.G., Dillon, S.J., Acta Mater. 60, 192 (2012).CrossRefGoogle Scholar
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B., Regan, B.C., ACS Nano 6, 6308 (2012).CrossRefGoogle Scholar
Sun, M., Liao, H.G., Niu, K., Zheng, H., Sci. Rep. 3, 3227 (2013).CrossRefGoogle Scholar
Park, J.H., Schneider, N.M., Steingart, D.A., Deligianni, H., Kodambaka, S., Ross, F.M., Nano Lett. 18, 1093 (2018).CrossRefGoogle Scholar
Goodenough, J.B., Kim, Y., Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P., Harris, C.T., ACS Nano 9, 4379 (2015).CrossRefGoogle Scholar
Lutz, L., Dachraoui, W., Demortière, A., Johnson, L.R., Bruce, P.G., Grimaud, A., Tarascon, J.-M., Nano Lett. 18, 1280 (2018).CrossRefGoogle Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, Robert L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., Nano Lett. 13, 6106 (2013).CrossRefGoogle Scholar
Unocic, R.R., Sun, X.G., Sacci, R.L., Adamczyk, L.A., Alsem, D.H., Dai, S., Dudney, N.J., More, K.L., Microsc. Microanal. 20, 1029 (2014).CrossRefGoogle Scholar
Zeng, Z., Zhang, X., Bustillo, K., Niu, K., Gamme, C., Xu, J., Zheng, H., Nano Lett. 15, 5214 (2015).CrossRefGoogle Scholar
Zeng, Z., Liang, W.-I., Chu, Y.-H., Zheng, H., Faraday Discuss. 176, 95 (2014).CrossRefGoogle Scholar
Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H.L., Chu, Y.-H., Zheng, H., Nano Lett. 14, 1745 (2014).CrossRefGoogle Scholar
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D., Unocic, R.R., Chem. Commun. 50, 2104 (2014).CrossRefGoogle Scholar
Sacci, R.L., Black, J.M., Balke, N., Dudney, N.J., More, K.L., Unocic, R.R., Nano Lett. 15, 2011 (2015).CrossRefGoogle Scholar
Mehdi, B.L., Qian, J., Nasybulin, E., Park, C., Welch, D.A., Faller, R., Mehta, H., Henderson, W.A., Xu, W., Wang, C.M., Evans, J.E., Liu, J., Zhang, J.G., Mueller, K.T., Browning, N.D., Nano Lett. 15, 2168 (2015).CrossRefGoogle Scholar
Sacci, R.L., Black, J.M., Balke, N., Dudney, N.J., More, K.L., Unocic, R.R., Nano Lett. 15, 2011 (2015).CrossRefGoogle Scholar
Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R., Sullivan, J.P., Harris, C.T., ACS Nano 9, 4379 (2015).CrossRefGoogle Scholar
Harrison, K.L., Zavadil, K.R., Hahn, N.T., Meng, X., Elam, J.W., Leenheer, A., Zhang, J.-G., Jungjohann, K.L., ACS Nano 11, 11194 (2017).CrossRefGoogle Scholar
Kushima, A., So, K.P., Su, C., Bai, P., Kuriyama, N., Maebashi, T., Fujiwara, Y., Bazant, M.Z., Li, J., Nano Energy 32, 271 (2017).CrossRefGoogle Scholar
Mehdi, B.L., Stevens, A., Qian, J., Park, C., Xu, W., Henderson, W.A., Zhang, J.G., Mueller, K.T., Browning, N.D., Sci. Rep. 6, 34267 (2016).CrossRefGoogle Scholar
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Kushima, A., Koido, T., Fujiwara, Y., Kuriyama, N., Kusumi, N., Li, J., Nano Lett. 15, 8260 (2015).CrossRefGoogle Scholar
Karakulina, O.M., Demortière, A., Dachraoui, W., Abakumov, A.M., Hadermann, J., Nano Lett. 18, 6286 (2018).CrossRefGoogle Scholar
Holtz, M.E., Yu, Y., Gunceler, D., Gao, J., Sundararaman, R., Schwarz, K.A., Arias, T.A., Abruña, H.D., Muller, D.A., Nano Lett. 14, 1453 (2014).CrossRefGoogle Scholar
Hodnik, N., Dehm, G., Mayrhofer, K.J., Acc. Chem. Res. 49, 2015 (2016).CrossRefGoogle Scholar
Zhu, G.-Z., Prabhudev, S., Yang, J., Gabardo, C.M., Botton, G.A., Soleymani, L., J. Phys. Chem. C 118, 22111 (2014).CrossRefGoogle Scholar
Beermann, V., Holtz, M.E., Padgett, E., de Araujo, J.F., Muller, D.A., Strasser, P., Energy Environ. Sci. 12, 2476 (2019).CrossRefGoogle Scholar
Bastidas, D.M., Metals 10, 458 (2020).CrossRefGoogle Scholar
Kosari, A., Zandbergen, H., Tichelaar, F., Visser, P., Terryn, H., Mol, A., Corrosion 76, 4 (2020).CrossRefGoogle Scholar
Chee, S., Hull, R., Ross, F., Microsc. Microanal. 18, 1110 (2012).CrossRefGoogle Scholar
Chee, S.W., Duquette, D.J., Ross, F.M., Hull, R., Microsc. Microanal. 20, 462 (2014).CrossRefGoogle Scholar
Chee, S.W., Pratt, S.H., Hattar, K., Duquette, D., Ross, F.M., Hull, R., Chem. Commun. 51, 168 (2015).CrossRefGoogle Scholar
Gross, D., Kacher, J., Key, J., Hattar, K., Robertson, I.M., Proc. Process. Prop. Des. Adv. Ceram. Compos. 261, (2017), p. 329.Google Scholar
Key, J.W., Zhu, S., Rouleau, C.M., Unocic, R.R., Xie, Y., Kacher, J., Ultramicroscopy 209, 112842 (2020).CrossRefGoogle Scholar
Malladi, S., Shen, C., Xu, Q., de Kruijff, T., Yücelen, E., Tichelaar, F., Zandbergen, H., Chem. Commun. 49, 10859 (2013).CrossRefGoogle Scholar
Schilling, S., Janssen, A., Zaluzec, N.J., Burke, M.G., Microsc. Microanal. 23, 741 (2017).CrossRefGoogle Scholar
Hayden, S.C., Chisholm, C., Grudt, R.O., Aguiar, J.A., Mook, W.M., Kotula, P.G., Pilyugina, T.S., Bufford, D.C., Hattar, K., Kucharski, T.J., Taie, I.M., Ostraat, M.L., Jungjohann, K.L., NPJ Mater. Degrad. 3, 1 (2019).CrossRefGoogle Scholar
Gao, K., Chu, W., Gu, B., Zhang, T., Qiao, L., Corrosion 56, 515 (2000).CrossRefGoogle Scholar
Bhowmick, S., Espinosa, H., Jungjohann, K., Pardoen, T., Pierron, O., MRS Bull. 44, 487 (2019).CrossRefGoogle Scholar
Lewis, B.B., Stanford, M.G., Fowlkes, J.D., Lester, K., Plank, H., Rack, P.D., Beilstein J. Nanotechnol. 6, 907 (2015).CrossRefGoogle Scholar
Leenheer, A.J., Jungjohann, K.L., Harris, C.T., Microsc. Microanal. 21, 1293 (2015).CrossRefGoogle Scholar
Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L., Sci. Rep. 7, 1 (2017).Google Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).Google Scholar
Woehl, T.J., Abellan, P., J. Microsc. 265, 135 (2017).CrossRefGoogle Scholar
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., Ultramicroscopy 127, 53 (2013).CrossRefGoogle Scholar
Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., Zhang, J.-G., Wang, C.-M., Evans, J.E., Browning, N.D., Nano Lett. 14, 1293 (2014).CrossRefGoogle Scholar
Sutter, E.A., Sutter, P.W., J. Am. Chem. Soc. 136, 16865 (2014).CrossRefGoogle Scholar
Karki, K., Mefford, T., Alsem, D.H., Salmon, N., Chueh, W.C., Microsc. Microanal. 24, 324 (2018).CrossRefGoogle Scholar
Stricker, E.A., Ke, X., Wainright, J.S., Unocic, R.R., Savinell, R.F., J. Electrochem. Soc. 166, H126 (2019).CrossRefGoogle Scholar
Mehdi, B.L., Stevens, A., Kovarik, L., Jiang, N., Mehta, H., Liyu, A., Reehl, S., Stanfill, B., Luzi, L., Hao, W., Bramer, L., Browning, N.D., Appl. Phys. Lett. 115 063102 (2019).CrossRefGoogle Scholar
Kim, B.H., Heo, J., Kim, S., Reboul, C.F., Chun, H., Kang, D., Bae, H., Hyun, H., Lim, J., Lee, H., Han, B., Hyeon, T., Alivisatos, A.P., Ercius, P., Elmlund, H., Park, J., Science 368, 60 (2020).CrossRefGoogle Scholar
Zachman, M.J., Hachtel, J.A., Idrobo, J.C., Chi, M., Angew. Chem. Int. Ed. Engl. 59, 1384 (2020).CrossRefGoogle Scholar