Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T06:14:52.121Z Has data issue: false hasContentIssue false

In situ characterization of metals at extremes

Published online by Cambridge University Press:  31 January 2011

N. D. Browning
Affiliation:
University of California-Davis, One Shields Ave., Davis, CA 95616, USA; [email protected]
G. H. Campbell
Affiliation:
Lawrence Livermore National Laboratory, MS L-356, PO Box 808, Livermore, CA 94550, USA; [email protected]
J. A. Hawreliak
Affiliation:
Lawrence Livermore National Laboratory, PO Box 808 L-286, Livermore, CA 94550, USA; [email protected]
M. A. Kirk
Affiliation:
Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, USA; [email protected]
Get access

Abstract

The fundamental processes taking place in metals under extreme conditions can occur on ultrafast timescales (i.e., nanoseconds to picoseconds), and yet their result can continue to have a significant impact on the structural properties for many years to follow. The challenge in developing in situ methods for characterization under extreme conditions therefore involves both the modification of the instrumentation to implement the high-temperature, strain, and radiation conditions and the definition of the timescale over which the measurement must be made. While techniques are well established for characterization of the long-term effects of extreme conditions, experiments are only just beginning to probe the initial stages of structural evolution. This article reviews recent developments in optical, x-ray, and electron probes of metals under extreme conditions and also discusses the needs for future experiments and potential pathways to achieving these goals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirsch, P.B., Horne, R.W., Whelan, M.J., Philos. Mag. 1, 677 (1956).CrossRefGoogle Scholar
2. Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768 (1998).CrossRefGoogle Scholar
3. Batson, P.E., Dellby, N., Krivanek, O.L., Nature 418, 617 (2002).CrossRefGoogle Scholar
4. Zhou, G.W., Yang, J.C., J. Mater. Res. 20, 1684 (2005).CrossRefGoogle Scholar
5. Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Cervantes-Sodi, F., Ferrari, A.C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., Robertson, J., Nano Lett. 7, 602 (2007).CrossRefGoogle Scholar
6. Sharma, R., J. Mater. Res. 20, 1695 (2005).CrossRefGoogle Scholar
7. Minor, A.M., Asif, S.A.S., Shan, Z.W., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., Warren, O.L., Nat. Mater. 5, 697 (2006).CrossRefGoogle Scholar
8. Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M., Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
9. Clark, B.G., Robertson, I.M., Dougherty, L.M., Ahn, D.C., Sofronis, P., J. Mater. Res. 20, 1792 (2005).CrossRefGoogle Scholar
10. Siwick, D.J., Dwyer, J.R., Jordan, R.E., Miller, R.J.D., Science 302, 1382 (2003).CrossRefGoogle Scholar
11. LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R., Browning, N.D., Appl. Phys. Lett. 89, 044105 (2006).CrossRefGoogle Scholar
12. LaGrange, T., Campbell, G.H., Reed, B., Taheri, M., Pesavento, J.B., Kim, J.S., Browning, N.D., Ultramicroscopy 108, 1441(2008).CrossRefGoogle Scholar
13. Armstrong, M.R., Boyden, K., Browning, N.D., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F., Kim, J.S., King, W.E., LaGrange, T.B., Pyke, B.J., Reed, B.W., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R., Ultramicroscopy 107, 356 (2007).CrossRefGoogle Scholar
14. Reed, B.W., Armstrong, M.R., Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T., Masiel, D.J., Microsc. Microanal. 15, 272 (2009).CrossRefGoogle Scholar
15. Bostanjoglo, O., Rosin, T., Mikroskopie 36, 344 (1980).Google Scholar
16. Bostanjoglo, O., Rosin, T., Phys. Status Solidi A 57, 561 (1980).CrossRefGoogle Scholar
17. Lobastov, V.A., Srinivasan, R., Zewail, A.H., Proc. Nat. Acad. Sci. U.S.A. 102, 7069 (2005).CrossRefGoogle Scholar
18. LaGrange, T., Grummon, D.S., Reed, B.W., Browning, N.D., King, W.E., Campbell, G.H., Appl. Phys. Lett. 94 (2009).CrossRefGoogle Scholar
19. Ting, J.M., Chen, P., J. Vac. Sci. Technol., A 19, 2382 (2001).CrossRefGoogle Scholar
20. Lee, H.J., Ni, H., Wu, D.T., Ramirez, A.G., Appl. Phys. Lett. 87 (2005).Google Scholar
21. Hinks, J.A., Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3652 (2009).CrossRefGoogle Scholar
22. Yao, Z., Hernandez-Mayoral, M., Jenkins, M.L., Kirk, M.A., Philos. Mag. 88, 2851 (2008).CrossRefGoogle Scholar
23. Hernandez-Mayoral, M., Yao, Z., Jenkins, M.L., Kirk, M.A., Philos. Mag. 88, 2881 (2008).CrossRefGoogle Scholar
24. Yao, Z., Jenkins, M.L., Hernández-Mayoral, M., Kirk, M.A., Philos. Mag. 112 (2010).Google Scholar
25. Dudarev, S.L., Bullough, R., Derlet, P.M., Phys. Rev. Lett. 100 135503 (2008).CrossRefGoogle Scholar
26. U.S. DOE Nuclear Energy Research Advisory Committee, “A Technology Roadmap for GenIV Nuclear Technology Systems” (2002); http://gif.inel.gov/roadmap/pdfs/gen_iv_roadmap.pdf.Google Scholar
27. Kaoumi, D., Motta, A.T., Kirk, M., Faney, T., Wirth, B., “Microstructure Evolution of a Model F/M Steel Irradiated with Ions In-Situ in a TEM and Modeling,” Electron Microscopy and Multiscale Modelling 2009 (EMMM09), Zurich, Switzerland, 2009.Google Scholar
28. Kirk, M., Li, M., Baldo, P., Microsc. Microanal. 15 (Suppl. 2), 1348 (2009).CrossRefGoogle Scholar
29. Kirk, M., Li, M., Baldo, P., Microsc. Microanal. 16 (Suppl. 2), 1608 (2010).CrossRefGoogle Scholar
30. Ng, A., Parfeniuk, D., DaSilva, L. Phys. Rev. Lett. 54, 2604 (1985).CrossRefGoogle Scholar
31. Kalantar, D.H., Remington, B.A., Colvin, J.D., Mikaelian, K.O., Weber, S.V., Wiley, L.G., Waork, J.S., Loveridge, A., Allen, A.M., Hauer, A.A., Phys. Plasmas 7, 1999 (2000).CrossRefGoogle Scholar
32. Loveridge-Smith, A., Allen, A., Belak, J., Boehly, T., Hauer, A., Holian, B., Kalantar, D., Kyrala, G., Lee, R.W., Lomdahl, P., Meyers, M.A., Paisley, D., Pollaine, S., Remington, B., Swift, D.C., Weber, S., Wark, J.S., Phys. Rev. Lett. 86, 2349 (2001).CrossRefGoogle Scholar
33. Kalantar, D.H., Belak, J.F., Collins, G.W., Colvin, J.D., Davies, H.M., Eggert, J.H., Germann, T.C., Hawreliak, J., Holian, B.L., Kadau, K., Lomdahl, P.S., Lorenzana, H.E., Meyers, M.A., Rosolankova, K., Schneider, M.S., Sheppard, J., Stolken, J.S., Wark, J.S., Phys. Rev. Let. 95, 075502/1–4 (2005).CrossRefGoogle Scholar
34. Hawreliak, J., Colvin, J., Eggert, J., Kalantar, D.H., Lorenzana, H.E., Pollaine, S., Rosolankova, K., Remington, B.A., Stölken, J., Wark, J.S., Astrophys. Space Sci. 307, 285 (2007).CrossRefGoogle Scholar
35. Lindl, J., Phys. Plasmas 2, 3933 (1995).CrossRefGoogle Scholar
36. Wark, J.S., Whitlock, R.R., Hauer, A.A., Swain, J.E., Solone, P.J., Phys. Rev. B 40, 5705 (1989).CrossRefGoogle Scholar
37. Remington, B.A., Cavallo, R.M., Edwards, M.J., Ho, D.D.M., Lasinski, B.F., Lorenz, K.T., Lorenzana, H.E., McNaney, J.M., Pollaine, S.M., Smith, R.F., Astrophys. Space Sci. 298, 235 (2005).CrossRefGoogle Scholar
38. Phillion, D.W., Hailey, C.J. Phys. Rev. A 34, 4886 (1986).CrossRefGoogle Scholar
39. Park, H.S., Izumi, N., Key, M.H., Koch, J.A., Landen, O.L., Patel, P.K., Phillips, T.W., Zhang, B.B., Rev. Sci. Instrum. 75, 4048 (2004).CrossRefGoogle Scholar
40. Kalantar, D.H., Bringa, E., Caturla, M., Colvin, J., Lorenz, K.T., Kumar, M., Stolken, J., Allen, A.M., Rosolankova, K., Wark, J.S., Meyers, M.A., Schneider, M., Boehly, T.R., Rev. Sci. Instrum. 74, 1934 (2003).CrossRefGoogle Scholar
41. Hawreliak, J., Lorenzana, H.E., Remington, B.A., Lukezic, S., Wark, J.S., Rev. Sci. Instrum. 78, 083908 (2007).CrossRefGoogle Scholar
42. Hawreliak, J., Butterfield, M., Davies, H., El-Dasher, B., Higginbotham, A., Kalantar, D.H., Kimminau, G., McNaney, J., Milathianaki, D., Murphy, W.J., Nagler, B., Park, N., Remington, B., Thorton, L., Whitcher, T., Wark, J.S., Lorenzana, H., AIP Conf. Proc. 955, 1327 (2007).Google Scholar
43. “For Users: Science at the National Ignition Facility;” https://lasers.llnl.gov/for_users.Google Scholar