Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T19:40:31.216Z Has data issue: false hasContentIssue false

The History, Physics, and Applications of the Smart-Cut® Process

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In a silicon-on-insulator (SOI) structure, a thin layer of monocrystalline silicon rests on a dielectric layer—generally amorphous—itself on a silicon wafer. Because such a structure cannot be achieved by conventional methods, different ways had to be imagined to facilitate its construction.

The basic physics phenomenon that led the author to invent the process generally known under the name of Smart-Cut® is blistering. Blistering (Figure 1), in addition to flaking and exfoliation, is a visible macroscopic effect that has been known for a long time and is induced by high-dose implantations of inert gas or hydrogen ions in materials. These macroscopic effects result from the cooperative result of the microscopic effects induced in depth by penetration of particles. The microscopic effects of hydrogen or rare-gas implantation such as creation of microcavities, microblisters, or microbubbles (close to the penetration depth Rp corresponding to the maximum concentration) have been known for a long time. These microcavities enhance propagation of intercavity fractures where their density (depending on statistical fluctuations) reaches a percolation threshold. This leads to formation of a local cluster where all the microcavities are joined by a fractured zone, resulting in a blister at the surface. The driving force of this mechanism is the gas pressure in the microcavities and the stresses in the layer.

Type
Siucon-on-Insulator Technology
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Colinge, J-P., Silicon-on-Insulator Technology: Materials to VLSI, 2nd ed. (Kluwer Academic Publishers, Boston, Dordrecht, London, 1997).CrossRefGoogle Scholar
2.Bruel, M., Nucl. Iustrum. Methods Phys. Res. B 108 (1996) p. 313.CrossRefGoogle Scholar
3.Kaminsky, M., IEEE Trans. Nucl. Sci. 18 (1971) p. 208.CrossRefGoogle Scholar
4.Chu, W.K., Kastl, R.H., Lever, R.F., Mader, S., and Masters, B.J.Radiation Damage of 50–250 keV Hydrogen Ions in Silicon,” in Ion Implantation in Semiconductors 1976, edited by Chernow, F., Borders, J.A., and Brice, D.K. (Plenum Press, New York and London, 1976).Google Scholar
5.Evans, J.H., J. Nucl. Mater. 68 (1977) p. 129.CrossRefGoogle Scholar
6.Bruel, M., Electron. Lett. 31 (14) (1995) p. 1201.CrossRefGoogle Scholar
7.Di Cioccio, L., Le Tiec, Y., Letertre, F., Jaussaud, C., and Bruel, M., Electron. Lett. 32 (12) (1996) p. 1144.CrossRefGoogle Scholar
8.Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Zussy, M., Papon, A.M., and Bruel, M., Electron. Lett. 34 (4) (1998) p. 408.CrossRefGoogle Scholar
9.Weldon, M.K., Marsico, V.E., Chabla, V.J., Agarwal, A., Eaglesham, D.J., Sapjeta, J., Brown, W.L., Jacobson, D.C., Caudano, Y., Christman, S.B., and Chaban, E.E., J. Vac. Sci. Technol. B 15 (4) 1997.Google Scholar
10.Bruel, M., FR Patent No. 2,681,472 (October 29, 1993); U.S. Patent No. 5,374,564 (December 20, 1994).Google Scholar
11.Auberton-Hervé, A.J., Lamure, J.M., Barge, T., Bruel, M., Aspar, B., and Pelloie, J.L., Semicond. Int. 11 (1995) p. 97.Google Scholar
12.Maszara, W.P., in Proc. Fourth Int. Symp. on Silicon on Insulator Technology and Devices, edited by Schmidt, D.N., vol. 90 (Electrochemical Society, Pennington, NJ, 1990) p. 199.Google Scholar
13.Tong, Q-Y., Scholz, R., Gosele, U., Lee, T-H., Huang, L-J., Chao, Y-L., and Tan, T-Y., Appl. Phys. Lett. 72 (1) 1998 p. 49.Google Scholar
14.Aspar, B., Bruel, M., Moriceau, H., Maleville, C., Poumeyrol, T., Papon, A.M., Claverie, A., Benassayag, G., Auberton-Hervé, A.J., and Barge, T., Microelectron. Eng. 36 (1997) p. 233.CrossRefGoogle Scholar
15.Aspar, B., Lagahe, C., Moriceau, H., Soubie, A., Bruel, M., Auberton-Hervé, A.J., Barge, T., and Maleville, C., in Defects and Impurities in Semiconductors, (Mater Res. Soc. Symp. Proc. 510, Pittsburgh, 1998).Google Scholar
16.Hubert, K.P. and Hezberg, G., Molecular Spectra and Molecular Structural Constants of Diatomic Molecules (Van Nostrand, New York, 1979).CrossRefGoogle Scholar
17.Pearton, S.J., Corbett, J.W., and Borenstein, J.T., Physica B170 (1991) p. 85.CrossRefGoogle Scholar
18.Agarwal, A., Haynes, T.E., Veneziza, V.V., Holland, O.W., and Eaglesham, D.J., Appl. Phys. Lett. 72 (9) (1998) p. 1086.CrossRefGoogle Scholar
19.Aspar, B., Bruel, M., Zussy, M., and Cartier, A.M., Electron. Lett. 32 (21) (1996) p. 1985.CrossRefGoogle Scholar