Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T03:05:04.908Z Has data issue: false hasContentIssue false

High piezoelectricity by multiphase coexisting point: Barium titanate derivatives

Published online by Cambridge University Press:  10 August 2018

Jinghui Gao
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment and Multidisciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, China; [email protected]
Xiaoqin Ke
Affiliation:
Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, China; [email protected]
Matias Acosta
Affiliation:
University of Cambridge, UK; [email protected]
Julia Glaum
Affiliation:
Department of Materials Science and Engineering, Norwegian University of Science and Technology, Norway; [email protected]
Xiaobing Ren
Affiliation:
Frontier Institute of Science and Technology, Xi’an Jiaotong University, China; and Center for Advanced Functional Materials, National Institute for Materials Science, Japan; [email protected]
Get access

Abstract

BaTiO3-based lead-free piezoelectric materials have long been known as “a mediocre class of piezoelectric materials.” However, they have seen significant renewed interest in recent years ever since the discovery of high piezoelectricity in Ba(Zr, Ti)O3-(Ba, Ca)TiO3 as well as the related Ba(Sn, Ti)O3-(Ba, Ca)TiO3 and Ba(Hf, Ti)O3-(Ba, Ca)TiO3 systems. The unexpectedly high piezoelectricity in this class of BaTiO3 (BT)-based materials is still not well understood and has stimulated significant research activity. We present a concise discussion of the notions leading to high piezoelectricity in BaTiO3-based systems. In particular, the possible role of a multiphase-coexisting point is highlighted.

Type
Lead-free Piezoceramics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jona, F., Shirane, G., Ferroelectric Crystals (Pergamon Press, Oxford, UK, 1962).Google Scholar
Jaffe, B., Piezoelectric Ceramics (Academic Press, New York, 1971).CrossRefGoogle Scholar
Sluka, T., Tagantsev, A.K., Damjanovic, D., Gureev, M., Setter, N., Nat. Commun. 3, 748 (2012).CrossRefGoogle Scholar
Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., Kiguchi, T., J. Appl. Phys. 98, 014109 (2005).CrossRefGoogle Scholar
Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., Kimura, T., Ferroelectrics 373, 11 (2008).CrossRefGoogle Scholar
Karaki, T., Yan, K., Miyamoto, T., Adachi, M., Jpn. J. Appl. Phys. 46, 97 (2007).CrossRefGoogle Scholar
Shen, Z.Y., Li, J.F., J. Ceram. Soc. Jpn. 118, 940 (2010).CrossRefGoogle Scholar
Ren, X., Nat. Mater. 3, 91 (2004).CrossRefGoogle Scholar
Budimir, M., Damjanovic, D., Setter, N., Phys. Rev. B Condens. Matter 72, 064107 (2005).CrossRefGoogle Scholar
Liu, W., Ren, X., Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
Xue, D., Zhou, Y., Bao, H., Appl. Phys. Lett. 99, 122901 (2011).CrossRefGoogle Scholar
Zhou, C., Liu, W., Xue, D., Appl. Phys. Lett. 100, 222910 (2012).CrossRefGoogle Scholar
Acosta, M., Novak, N., Jo, W., Acta Mater. 80, 48 (2014).CrossRefGoogle Scholar
Acosta, M., Khakpash, N., Someya, T., Novak, N., Jo, W., Nagata, H., Rossetti, G.A., Rödel, J., Phys. Rev. B Condens. Matter 91, 104108 (2015).CrossRefGoogle Scholar
Brandt, D.R.J., Acosta, M., Koruza, J., Webber, K.G., J. Appl. Phys. 115, 204107 (2014).CrossRefGoogle Scholar
Benabdallah, F., Simon, A., Khemakhem, H., Elissalde, C., Maglione, M., J. Appl. Phys. 109, 124116 (2011).CrossRefGoogle Scholar
Xue, D., Zhou, Y., Bao, H., Gao, J., Zhou, C., Ren, X., J. Appl. Phys. 109, 054110 (2011).CrossRefGoogle Scholar
Xue, D., Gao, J., Zhou, Y., Ding, X., Sun, J., Lookman, T., Ren, X., J. Appl. Phys. 117, 124107 (2015).CrossRefGoogle Scholar
Gao, J., Hu, X., Zhang, L., Li, F., Zhang, L., Wang, Y., Hao, Y., Zhong, L., Ren, X., Appl. Phys. Lett. 104, 252909 (2014).CrossRefGoogle Scholar
Tutuncu, G., Li, B., Bowman, K., Jones, J.L., J. Appl. Phys. 115, 144104 (2014).CrossRefGoogle Scholar
Wang, W., Wang, L.D., Li, W.L., Xu, D., Hou, Y.F., Cao, W.P., Feng, Y., Fei, W.D., Ceram. Int. 40, 14907 (2014).CrossRefGoogle Scholar
Ehmke, M.C., Glaum, J., Hoffman, M., Blendell, J.E., Bowman, K.J., J. Am. Ceram. Soc. 96, 9 (2013).Google Scholar
Acosta, M., Novak, N., Rossetti, G.A., Rödel, J., Appl. Phys. Lett. 107, 142906 (2015).CrossRefGoogle Scholar
Ehmke, M.C., Khansur, N.H., Daniels, J.E., Blendell, J.E., Bowman, K.J., Acta Mater. 66, 340 (2014).CrossRefGoogle Scholar
Li, F., Jin, L., Guo, R., Appl. Phys. Lett. 105, 232903 (2014).CrossRefGoogle Scholar
Acosta, M., Schmitt, L.A., Cazorla, C., Studer, A., Zintler, A., Glaum, J., Kleebe, H.J., Donner, W., Hoffman, M., Rödel, J., Hinterstein, M., Sci. Rep. 6, 28742 (2016).CrossRefGoogle Scholar
Rojas, V., Koruza, J., Patterson, E.A., Acosta, M., Jiang, X., Liu, N., Dietz, C., Rödel, J., J. Am. Ceram. Soc. 100, 4699 (2017).CrossRefGoogle Scholar
Humburg, H.I., Acosta, M., Jo, W., Webber, K.G., Rödel, J., J. Eur. Ceram. Soc. 35, 1209 (2015).CrossRefGoogle Scholar
Zhao, L., Ke, X., Wang, W., Phys. Rev. B Condens. Matter 95, 020101 (2017).CrossRefGoogle Scholar
Acosta, M., Novak, N., Rojas, V., Appl. Phys. Rev. 4, 041305 (2017).CrossRefGoogle Scholar
Ehmke, M.C., Ehrlich, S.N., Blendell, J.E., Bowman, K.J., J. Appl. Phys. 111, 124110 (2012).CrossRefGoogle Scholar
Haugen, A.B., Forrester, J.S., Damjanovic, D., Li, B., Bowman, K.J., Jones, J.L., J. Appl. Phys. 113, 014103 (2013).Google Scholar
Gao, J., Xue, D., Wang, Y., Wang, D., Zhang, L., Wu, H., Guo, S., Bao, H., Zhou, C., Liu, W., Appl. Phys. Lett. 99, 092901 (2011).CrossRefGoogle Scholar
Gao, J., Zhang, L., Xue, D., Kimoto, T., Song, M., Zhong, L., Ren, X., J. Appl. Phys. 115, 054108 (2014).CrossRefGoogle Scholar
Keeble, D.S., Benabdallah, F., Thomas, P.A., Maglione, M., Kreisel, J., Appl. Phys. Lett. 102, 092903 (2013).CrossRefGoogle Scholar
Zhang, L., Zhang, M., Wang, L., Zhou, C., Zhang, Z., Yao, Y., Zhang, L., Xue, D., Lou, X., Ren, X., Appl. Phys. Lett. 105, 162908 (2014).CrossRefGoogle Scholar
Damjanovic, D., Biancoli, A., Batooli, L., Vahabzadeh, A., Trodahl, J., Appl. Phys. Lett. 100, 192907 (2012).CrossRefGoogle Scholar
Zhukov, S., Acosta, M., Genenko, Y.A., Seggern, H.V., J. Appl. Phys. 118, 134104 (2015).CrossRefGoogle Scholar
Noheda, B., Cox, D.E., Shirane, G., Appl. Phys. Lett. 74, 2059 (1999).CrossRefGoogle Scholar
Gao, J.H., Hu, X.H., Wang, Y., Liu, Y.B., Zhang, L.X., Ke, X.Q., Zhong, L.S., Zhao, H., Ren, X.B., Acta Mater. 125, 177 (2017).CrossRefGoogle Scholar
Gao, J., Xue, D., Liu, W., Zhou, C., Ren, X., Actuators 6 (3), 24 (2017).CrossRefGoogle Scholar
Gao, J., Ye, D., Hu, X., Ke, X., Zhong, L., Li, S., Zhang, L., Wang, Y., Wang, D., Wang, Y., Liu, Y., Xiao, H., Ren, X., Europhys. Lett. 115, 37001 (2016).CrossRefGoogle Scholar
Gao, J., Wang, Y., Liu, Y., Hu, X., Ke, X., Zhong, L., He, Y., Ren, X., Sci. Rep. 7, 40916 (2017).CrossRefGoogle Scholar
Gao, J., Liu, Y., Wang, Y., Hu, X., Yan, W., Ke, X., Zhong, L., He, Y., Ren, X., J. Phys. Chem. C 121, 13106 (2017).CrossRefGoogle Scholar
Guo, H., Zhou, C., Ren, X., Tan, X., Phys. Rev. B Condens. Matter 89, 100104 (2014).CrossRefGoogle Scholar
Guo, H., Voas, B.K., Zhang, S., Zhou, C., Ren, X., Beckman, S.P., Tan, X., Phys. Rev. B Condens. Matter 90, 014103 (2014).CrossRefGoogle Scholar
Zakhozheva, M., Schmitt, L.A., Acosta, M., Jo, W., Rödel, J., Kleebe, H.-J., Appl. Phys. Lett. 105, 112904 (2014).CrossRefGoogle Scholar
Zakhozheva, M., Schmitt, L.A., Acosta, M., Guo, H., Jo, W., Schierholz, R., Kleebe, H.J., Tan, X., Phys. Rev. Appl. 3, 064018 (2015).CrossRefGoogle Scholar
Xue, D., Zhou, Y., Gao, J., Ding, X., Ren, X., Europhys. Lett. 100, 17010 (2012).CrossRefGoogle Scholar
Porta, M., Lookman, T., Phys. Rev. B Condens. Matter 83, 174108 (2011).CrossRefGoogle Scholar
Heitmann, A.A., Rossetti, G.A., J. Am. Ceram. Soc. 97, 1661 (2014).CrossRefGoogle Scholar
Yang, T., Ke, X., Wang, Y.. Sci. Rep. 6, 33392 (2016).CrossRefGoogle Scholar
Gao, J., Hao, Y., Ren, S., Kimoto, T., Fang, M., Li, H., Wang, Y., Zhong, L., Li, S., Ren, X., J. Appl. Phys. 117, 084106 (2015).CrossRefGoogle Scholar
Gao, J., Ren, S., Zhang, L., Hao, Y., Fang, M., Zhang, M., Dai, Y., Hu, X., Wang, D., Zhong, L., Li, S., Appl. Phys. Lett. 107, 032902 (2015).CrossRefGoogle Scholar