Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T10:34:02.377Z Has data issue: false hasContentIssue false

Greater than the sum: Synergy and emergent properties in nanoparticle–polymer composites

Published online by Cambridge University Press:  04 September 2015

Millicent A. Firestone
Affiliation:
Materials Physics & Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; [email protected]
Steven C. Hayden
Affiliation:
Materials Physics & Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA; [email protected]
Dale L. Huber
Affiliation:
Center for Integrated Nanotechnologies, Sandia National Laboratories, USA; [email protected]
Get access

Abstract

The ongoing pursuit of multifunctional soft materials that can impact a wide range of technological challenges, ranging from information processing to energy storage and transducing devices, has resulted in the development of hybrid materials composed of nanoparticles (NPs) dispersed in polymers. Beyond the simple preparation of composites that have the additive value of the individual components, this review discusses recent work and trends in composites that exhibit novel synergistic or emergent properties arising from combining the components. In particular, we highlight recent examples of composites in which NP assembly within polymers leads to enhancement or changes of the NP properties and how introducing NPs into a polymer can cause significant changes in the polymer’s intrinsic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kovalenko, M.V., Manna, L., Cabot, A., Hens, Z., Talapin, D.V., Kagan, C.R., Klimov, V.I., Rogach, A.L., Reiss, P., Milliron, D.J., Guyot-Sionnnest, P., Konstantatos, G., Parak, W.J., Hyeon, T., Korgel, B.A., Murray, C.B., Heiss, W., ACS Nano 9 (2), 1012 (2015).CrossRefGoogle Scholar
Melinon, P., Begin-Colin, S., Duvail, J.L., Gauffre, F., Boime, N.H., Ledoux, G., Plain, J., Reiss, P., Silly, F., Warot-Fonrose, B., Phys. Rep. 543 (3), 163 (2014).CrossRefGoogle Scholar
Tenne, R., Front. Phys. 9 (3), 370 (2014).CrossRefGoogle Scholar
Polking, M.J., Alivisatos, A.P., Ramesh, R., MRS Commun. 5 (01), 27 (2015).CrossRefGoogle Scholar
Banin, U., Ben-Shahar, Y., Vinokurov, K., Chem. Mater. 26 (1), 97 (2014).CrossRefGoogle Scholar
Heiligtag, F.J., Niederberger, M., Mater. Today 16 (7–8), 262 (2013).CrossRefGoogle Scholar
Li, Y.J., Zhu, H., Hon, C., Jiang, Y., Li, Y.F., Prog. Chem. 25 (2–3), 276 (2013).Google Scholar
Majetich, S.A., Wen, T.L., Mefford, O.T., MRS Bull. 38 (11), 899 (2013).CrossRefGoogle Scholar
Xia, Y.N., Xia, X.H., Wang, Y., Xie, S.F., MRS Bull. 38 (4), 335 (2013).CrossRefGoogle Scholar
Olson, J., Dominguez-Medina, S., Hoggard, A., Wang, L.Y., Chang, W.S., Link, S., Chem. Soc. Rev. 44 (1), 40 (2015).CrossRefGoogle Scholar
Nguyen, T.D., Nanoscale 5 (20), 9455 (2013).CrossRefGoogle Scholar
Zaera, F., ChemSusChem 6 (10), 1797 (2013).CrossRefGoogle Scholar
Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R., Int. J. Mol. Sci. 14 (8), 15977 (2013).CrossRefGoogle Scholar
Xu, C., Qu, X.G., NPG Asia Mater. 6 e90, (2014).CrossRefGoogle Scholar
Schauermann, S., Nilius, N., Shaikhutdinov, S., Freund, H.J., Acc. Chem. Res. 46 (8), 1673 (2013).CrossRefGoogle Scholar
Gross, E., Liu, J.H.C., Toste, F.D., Somorjai, G.A., Nat. Chem. 4 (11), 947 (2012).CrossRefGoogle Scholar
Huber, D.L., Small 1 (5), 482 (2005).CrossRefGoogle Scholar
Balazs, A., Emrick, T., Russell, T.P., Science 314, 1107 (2006).CrossRefGoogle Scholar
Hanemann, T., Szabó, D.V., Materials 3, 3468 (2010).CrossRefGoogle Scholar
Jeon, I.Y., Baek, J.B., Materials 3 (6), 3654 (2010).CrossRefGoogle Scholar
Kumar, S.K., Krishnamoorti, R., Annu. Rev. Chem. Biomol. Eng. 1, 37 (2010).CrossRefGoogle Scholar
Schexnailder, P., Schmidt, G., Colloid Polym. Sci. 287, 1 (2009).CrossRefGoogle Scholar
Ingrosso, C., Panniello, A., Comparelli, R., Curri, M.L., Striccoli, M., Materials 3, 1316 (2010).CrossRefGoogle Scholar
Sarkar, S., Guibal, E., Quignard, F., SenGupta, A.K., J. Nanopart. Res. 14, 1 (2012).CrossRefGoogle Scholar
Sarkar, B., Alexandridis, P., Prog. Polym. Sci. 40, 33 (2015).CrossRefGoogle Scholar
Hassanabadi, H.M., Rodrigue, D., Macromol. Mater. Eng. 299 (10), 1220 (2014).CrossRefGoogle Scholar
Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K., Carbon 44, 1624 (2006).CrossRefGoogle Scholar
Mark, E., in Handbook of Multiphase Polymer Systems, Boudenne, A., Ibos, L., Candau, Y., Thomas, S., Eds. (Wiley, New York, 2011) pp. 959980.CrossRefGoogle Scholar
Kao, J., Bai, P., Chuang, V. P., Jiang, Z., Ercius, P., Xu, T., Nano Lett. 12, 2610 (2012).CrossRefGoogle Scholar
Kumar, S.K., Jouault, N., Macromolecules 46, 3199 (2013).CrossRefGoogle Scholar
Wang, L.B., Xu, L.G., Kuang, H., Xu, C.L., Kotov, N.A., Acc. Chem. Res. 45 (11), 1916 (2012).CrossRefGoogle Scholar
Zhang, H., Han, J., Yang, B., Adv. Funct. Mater. 20, 1533 (2010).CrossRefGoogle Scholar
Baia, L., Baia, M., Kiefer, W., Popp, J., Simon, S., Chem. Phys. 327, 63 (2006).CrossRefGoogle Scholar
Simo, A., Polte, J., Pfänder, N., Vainio, U., Emmerling, F., Rademann, K., J. Am. Chem. Soc. 134, 18824 (2012).CrossRefGoogle Scholar
Heck, G., Napp, J., Simonato, S., Möllmer, J., Lange, M., Reichardt, H.M., Staudt, R., Alves, F., Feldmann, C., J. Am. Chem. Soc. 137, 7329 (2015).CrossRefGoogle Scholar
Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M., Chem. Rev. 112 (5), 2739 (2012).CrossRefGoogle Scholar
Auyeung, E., Li, T.I.N.G., Senesi, A.J., Schmucker, A.L., Pals, B.C., de la Cruz, M.O., Mirkin, C.A., Nature 505, 73 (2014).CrossRefGoogle Scholar
Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M., Nano Rev. 1, 5214 (2010).CrossRefGoogle Scholar
Arciniegas, M.P., Kim, M.R., De Graaf, J., Brescia, R., Marras, S., Miszta, K., Dijkstra, M., van Roij, R., Manna, L., Nano Lett. 14 (2), 1056 (2014).CrossRefGoogle Scholar
Jiao, Y., Akcora, P., Macromolecules 45 (8), 3463 (2012).CrossRefGoogle Scholar
Yang, X., Chueh, C.C., Li, C.Z., Yip, H.L., Yin, P., Chen, H., Chen, W.C., Jen, A.K.Y., Adv. Energy Mater. 3 (5), 666 (2013).CrossRefGoogle Scholar
Pavlov, A.M., Gabriel, S.A., Sukhorukov, G.B., Gould, D.J., Nanoscale 7 (21), 9686 (2015).CrossRefGoogle Scholar
Hammond, P.T., Adv. Mater. 16, 1271 (2004).CrossRefGoogle Scholar
Srivastava, S., Kotov, N., Acc. Chem. Res. 41, 1831 (2008).CrossRefGoogle Scholar
Wang, Y., Angelatos, A.S., Caruso, F., Chem. Mater. 20, 848 (2008).CrossRefGoogle Scholar
Bockstaller, M.R., Mickiewicz, R.A., Thomas, E.L., Adv. Mater. 17, 1331 (2005).CrossRefGoogle Scholar
Kao, J., Bai, P., Chuang, V.P., Jiang, Z., Ercius, P., Xu, T., Nano Lett. 12, 2610 (2012).CrossRefGoogle Scholar
Williams, R.J.J., Hoppe, C.E., Zucchi, I.A., Romeo, H.E., Dell’Erba, I.E., Gomez, M.L., Puig, J., Leonardi, A.B., J. Colloid Interface Sci. 447, 129 (2015).CrossRefGoogle Scholar
Luo, Q., Hickey, R.J., Park, S.-J., ACS Macro Lett. 2 (2), 107 (2013).CrossRefGoogle Scholar
Tang, E., Cheng, G., Ma, X., Powder Technol. 161, 209 (2006).CrossRefGoogle Scholar
Green, P.F., Soft Matter 7, 7914 (2011).CrossRefGoogle Scholar
Grabowski, C.A., Koerner, H., Meth, J.S., Dang, A., Hui, C.M., Matyjaszewski, K., Bockstaller, M.R., Durstock, M.F., Vaia, R.A., ACS Appl. Mater. Interfaces 6, 21500 (2014).CrossRefGoogle Scholar
Gao, B., Rozin, M.J., Tao, A.R., Nanoscale 5, 5677 (2013).CrossRefGoogle Scholar
Jayaraman, A., J. Polym. Sci. B Polym. Phys. 51, 524 (2013).CrossRefGoogle Scholar
Paniagua, S.A., Kim, Y., Henry, K., Kumar, R., Perry, J.W., Marder, S.R., ACS Appl. Mater. Interfaces 6, 3477 (2014).CrossRefGoogle Scholar
Batra, D., Seifert, S., Varela, L.M., Liu, A.C.Y., Firestone, M.A., Adv. Funct. Mater. 17 (8), 1279 (2007).CrossRefGoogle Scholar
Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W., Composites Part B 39 (6), 933 (2008).CrossRefGoogle Scholar
Nakatani, A.I., Chen, W., Schmidt, R.G., Gordon, G.V., Han, C.C., Polymer 42 (8), 3713 (2001).CrossRefGoogle Scholar
Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., Van Horn, B., Guan, Z.B., Chen, G.H., Krishnan, R.S., Science 311 (5768), 1740 (2006).CrossRefGoogle Scholar
Gupta, S., Zhang, Q., Emerick, T., Balazas, A.C., Russell, T.P., Nat. Mater. 5, 229 (2006).CrossRefGoogle Scholar
Gam, S., Meth, J.S., Zane, S.G., Chi, C., Wood, B.A., Winey, K.I., Clarke, N., Composto, R.J., Soft Matter 8, 6512 (2012).CrossRefGoogle Scholar
Fox, T.G., Flory, P.J., J. Appl. Phys. 21 (6), 581 (1950).CrossRefGoogle Scholar
Giannelis, E.P., Adv. Mater. 8 (1), 29 (1996).CrossRefGoogle Scholar
Bharadwaj, R.K., Macromolecules 34 (26), 9189 (2001).CrossRefGoogle Scholar
Chen, Y., Jia, M., Xu, H., Cao, Y., Fan, H., J. Phys. Chem. C 118 (48), 28179 (2014).CrossRefGoogle Scholar
Merkel, T.C., Freeman, B.D., Spontak, R.J., He, Z., Pinnau, I., Meakin, P., Hill, A.J., Science 296 (5567), 519 (2002).CrossRefGoogle Scholar
Janes, D.W., Durning, C.J., Macromolecules 46 (3), 856 (2013).CrossRefGoogle Scholar
Utracki, L.A., J. Polym. Sci. B Polym. Phys. 46 (23), 2504 (2008).CrossRefGoogle Scholar
Kalathi, J.T., Grest, G.S., Kumar, S.K., Phys. Rev. Lett. 109 (19), 198301 (2012).CrossRefGoogle Scholar
Kim, B.J., Fredrickson, G.H., Hawker, C.J., Kramer, E.J., Langmuir 23 (14), 7804 (2007).CrossRefGoogle Scholar
Gam, S., Corlu, A., Chung, H.-J., Ohno, K., Hore, M.J.A., Composto, R.J., Soft Matter 7 (16), 7262 (2011).CrossRefGoogle Scholar
Maillard, D., Kumar, S.K., Rungta, A., Benicewicz, B.C., Prud’homme, R.E., Nano Lett. 11 (11), 4569 (2011).CrossRefGoogle Scholar
Price, A.D., Hur, S.M., Fredrickson, G.H., Frischneckt, A.L., Huber, D.L., Macromolecules 45 (1), 510 (2012).CrossRefGoogle Scholar
Shenhar, R., Norsten, T.B., Rotello, V.M., Adv. Mater. 17, 657 (2005).CrossRefGoogle Scholar
Kao, J., Thorkelsson, K., Bai, P., Rancatore, B.J., Xu, T., Chem. Soc. Rev. 42 (7), 2654 (2013).CrossRefGoogle Scholar
Sprenger, S., J. Compos. Mater. 49 (1), 53 (2015).CrossRefGoogle Scholar
Srivastava, S., Schaefer, J.L., Yang, Z., Tu, Z., Archer, L.A., Adv. Mater. 26 (2), 201 (2014).CrossRefGoogle Scholar
Murugadoss, A., Chattopadhyay, A., Nanotechnology 19, 015603 (2008).CrossRefGoogle Scholar
Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J., Nano Lett. 14 (10), 5561 (2014).CrossRefGoogle Scholar
Cosgun, A., Fu, R., Jiang, W., Li, J., Song, J., Song, X., Zeng, H., J. Mater. Chem. C 3 (2), 257 (2015).CrossRefGoogle Scholar
Chen, Y., Dong, P.-F., Xu, J.-H., Luo, G.-S., Langmuir 30 (28), 8538 (2014).CrossRefGoogle Scholar
Mosconi, D., Mazzier, D., Silvestrini, S., Privitera, A., Marega, C., Franco, L., Moretto, A., ACS Nano 9 (4), 4156 (2015).CrossRefGoogle Scholar
Chuang, M.K., Chen, F.C., ACS Appl. Mater. Interfaces 7 (13), 7397 (2015).CrossRefGoogle Scholar
Yang, Y., Lin, X., Qing, J., Zhong, Z., Ou, J., Hu, C., Chen, X., Zhou, X., Chen, Y., Appl. Phys. Lett. 104 (12), 123302 (2014).CrossRefGoogle Scholar
Yen, C.-W., Hayden, S.C., Dreaden, E.C., Szymanski, P., El-Sayed, M.A., Nano Lett. 11 (9), 3821 (2011).CrossRefGoogle Scholar
Choi, H., Lee, J.-P., Ko, S.-J., Jung, J.-W., Park, H., Yoo, S., Park, O., Jeong, J.-R., Park, S., Kim, J.Y., Nano Lett. 13 (5), 2204 (2013).CrossRefGoogle Scholar
Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., Gutierrez, J., Mater. Chem. Phys. 131 (3), 698 (2012).CrossRefGoogle Scholar
Vasundhara, K., Mandal, B.P., Tyagi, A.K., RSC Adv. 5 (12), 8591 (2015).CrossRefGoogle Scholar
Hore, M.J.A., Composto, R.J., Macromolecules 47 (3), 875 (2014).CrossRefGoogle Scholar
Perez, J., Rodriguez-Gonzalez, B., Mulaney, P., Liz-Marzan, L.M., Adv. Funct. Mater. 15, 1065 (2005).CrossRefGoogle Scholar
Lin, Y., Wei, Q., Qian, G., Yao, L., Watkins, J.J., Macromolecules 45, 8665 (2012).CrossRefGoogle Scholar
Gao, B., Arya, G., Tao, A.R., Nat. Nanotechnol. 7, 433 (2012).CrossRefGoogle Scholar
Chen, H.W., Dong, W.L., Ge, J., Wang, C.H., Wu, X.D., Lu, W., Chen, L.W., Sci. Rep. 3, 1910 (2013).CrossRefGoogle Scholar
Wang, X.F., Xiang, Q.Y., Liu, B., Wang, L.J., Luo, T., Chen, D., Shen, G.Z., Sci. Rep. 3, 1441 (2013).Google Scholar
Chatterjee, D.K., Fong, L.S., Zhang, Y., Adv. Drug Deliv. Rev. 60 (15), 1627 (2008).CrossRefGoogle Scholar
Lee, S., Cummins, M.D., Willing, G.A., Firestone, M.A., J. Mater. Chem. 19 (43), 8092 (2009).CrossRefGoogle Scholar
Lee, S., Ringstrand, B.S., Stone, D.A., Firestone, M.A., ACS Appl. Mater. Interfaces 4 (5), 2311 (2012).CrossRefGoogle Scholar
Yang, G., Shen, P., Tan, K., Xia, Y., Microchim. Acta 181 (5–6), 607 (2014).CrossRefGoogle Scholar
Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulović, V., Nat. Photonics 7 (1), 13 (2013).CrossRefGoogle Scholar
Oh, Y., Islam, M.F., ACS Nano 9 (4), 4103 (2015).CrossRefGoogle Scholar
Zhang, H., Liu, Y., Yao, D., Yang, B., Chem. Soc. Rev. 41, 6066 (2012).CrossRefGoogle Scholar
Tokarev, I., Minko, S., Soft Matter 8 (22), 5980 (2012).CrossRefGoogle Scholar
Heo, K., Miesch, C., Emerick, T., Hayward, R.C., Nano Lett. 13, 5297 (2013).CrossRefGoogle Scholar
Zhao, Y., Thorkelsson, K., Mastronianni, A.J., Schilling, T., Luther, J.M., Rancatore, B.J., Matsunaga, K., Jinnnai, H., Wu, Y., Poulsen, D., Frechet, J.M., Alivisatos, A.P., Xu, T., Nat. Mater. 8, 979 (2009).CrossRefGoogle Scholar
Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S., Nat. Mater. 9, 101 (2010).CrossRefGoogle Scholar